P2X7 Receptors Mediate CO-Induced Alterations in Gene Expression in Cultured Cortical Astrocytes—Transcriptomic Study

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Carbon monoxide (CO) is an endogenous gasotransmitter that limits inflammation and prevents apoptosis in several tissues, including the brain. Low concentrations of CO are cytoprotective in astrocytes, neurons, and microglia, but the underlying molecular mechanisms remain poorly understood. This work aims at identification of alterations in gene expression conferred by CO in primary cultures of cortical astrocytes, for further disclosure of the molecular mechanism of action of the gasotransmitter. Astrocytes were treated with the CO-releasing molecule CORM-A1 for 40 min, and transcriptional changes were analyzed using RNASeq. A total of 162 genes were differentially expressed in response to CO treatment, and 7 of these genes were selected for further analysis: FosB, Scand1, Rgs10, Actg1, Panx1, Pcbdh21, and Rn18s. The alterations in their expression were further validated using qRT-PCR. An increase in FosB protein expression was also observed after 40 min of CORM-A1 treatment, as determined by a western blot. CO-induced FosB expression and cytoprotection were both abrogated in the presence of the P2X7 receptor antagonist A-438079. Furthermore, CORM-A1 increased phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII), which is a downstream event of P2X7R activation. The functional importance of FosB in CO-induced survival was assessed by knocking down its expression with FosB siRNA. Astrocytes were challenged to death with oxidative stress and cell viability was assessed 24 h later. Downregulation of FosB did not prevent the effects of CO in the inhibition of astrocytic cell death. Nevertheless, the transcriptomic changes observed upon treatment of astrocytes with CO open new opportunities for further studies on CO cytoprotective pathways.

Original languageEnglish
Pages (from-to)3159-3174
JournalMolecular Neurobiology
Volume56
Issue number5
DOIs
Publication statusPublished - May 2019

Keywords

  • Astrocytes
  • Carbon monoxide
  • Cytoprotection
  • FosB
  • P2X7R
  • Transcriptome

Fingerprint Dive into the research topics of 'P2X7 Receptors Mediate CO-Induced Alterations in Gene Expression in Cultured Cortical Astrocytes—Transcriptomic Study'. Together they form a unique fingerprint.

  • Cite this