TY - JOUR
T1 - Oxidative stress on scleractinian coral fragments following exposure to high temperature and low salinity
AU - Dias, M.
AU - Madeira, Carolina
AU - Jogee, N.
AU - Ferreira, Ana
AU - Gouveia, Raúl
AU - Cabral, Henrique
AU - Diniz, Mário
AU - Vinagre, Catarina
N1 - info:eu-repo/grantAgreement/FCT/3599-PPCDT/127742/PT#
the strategic projects Pest UID/MAR/04292/2019 and UID/Multi/04378/2019, the PhD research grant SFRH/BD/103047/2014 awarded to M. Dias and the FCT research position awarded to C. Vinagre.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Global warming is leading to both increases in frequency and intensity of tropical storms, with consequent salinity decrease at shallow reef areas, but also to mass bleaching events and mortality of reef-building corals around the world. Tropical storms can help reef-building corals to reproduce through fragmentation, allowing their expansion throughout the reefs. The combination of high temperature and low salinity may aggravate the effects of coral bleaching. Investigation of alterations at the cellular level will be useful since this is the first detectable response of organisms to changes in environmental conditions. In this study, the long-term oxidative stress induced by elevated temperature (30 °C), low salinity (20 psu), and their combination was studied on fragments of reef-forming corals, and compared to control conditions (26 °C, 33 psu). Determination of oxidative stress biomarkers: lipid peroxidation (LPO); superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) activities in a long-term experiment (60 days), using nine Indo-Pacific reef-forming coral species, provided useful information that was interpreted in combination with the observed general condition of these organisms (appearance: normal, pale, bleached, dead). High temperature affected the general condition of the species tested to a lower degree than did low salinity. Only two species died at high temperature, while low salinity resulted in the death of all species with the exception of two (P. contigua and G. fascicularis). Oxidative damage was detected in some species, as were antioxidant responses, at high temperature. Coral general condition was severely affected in all species in the low salinity treatment. Galaxea fascicularis and Psammocora contigua were the most resistant to salinity stress, having survived the experimental treatment. Oxidative damage was not detected in these species, but there was an antioxidant response. The high temperature + low salinity (HT + LS) treatment had synergistic effects in the condition of all species. Galaxea fascicularis was the only survivor in the HT + LS treatment. Mortality was high (60%) for this species, oxidative damage was not detected, but an increase in SOD activity revealed an antioxidant response.
AB - Global warming is leading to both increases in frequency and intensity of tropical storms, with consequent salinity decrease at shallow reef areas, but also to mass bleaching events and mortality of reef-building corals around the world. Tropical storms can help reef-building corals to reproduce through fragmentation, allowing their expansion throughout the reefs. The combination of high temperature and low salinity may aggravate the effects of coral bleaching. Investigation of alterations at the cellular level will be useful since this is the first detectable response of organisms to changes in environmental conditions. In this study, the long-term oxidative stress induced by elevated temperature (30 °C), low salinity (20 psu), and their combination was studied on fragments of reef-forming corals, and compared to control conditions (26 °C, 33 psu). Determination of oxidative stress biomarkers: lipid peroxidation (LPO); superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) activities in a long-term experiment (60 days), using nine Indo-Pacific reef-forming coral species, provided useful information that was interpreted in combination with the observed general condition of these organisms (appearance: normal, pale, bleached, dead). High temperature affected the general condition of the species tested to a lower degree than did low salinity. Only two species died at high temperature, while low salinity resulted in the death of all species with the exception of two (P. contigua and G. fascicularis). Oxidative damage was detected in some species, as were antioxidant responses, at high temperature. Coral general condition was severely affected in all species in the low salinity treatment. Galaxea fascicularis and Psammocora contigua were the most resistant to salinity stress, having survived the experimental treatment. Oxidative damage was not detected in these species, but there was an antioxidant response. The high temperature + low salinity (HT + LS) treatment had synergistic effects in the condition of all species. Galaxea fascicularis was the only survivor in the HT + LS treatment. Mortality was high (60%) for this species, oxidative damage was not detected, but an increase in SOD activity revealed an antioxidant response.
KW - Coral conservation
KW - Global climate change
KW - Heat stress
KW - Hyposaline stress
KW - Oxidative stress biomarkers
UR - http://www.scopus.com/inward/record.url?scp=85069675067&partnerID=8YFLogxK
U2 - 10.1016/j.ecolind.2019.105586
DO - 10.1016/j.ecolind.2019.105586
M3 - Article
AN - SCOPUS:85069675067
SN - 1470-160X
VL - 107
JO - Ecological Indicators
JF - Ecological Indicators
M1 - 105586
ER -