On the Complexity Requirements of a Panel-Based Large Intelligent Surface

Andreia Pereira, Fredrik Rusek, Marco Gomes, Rui Dinis

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A Large Intelligent Surface (LIS) is a recently proposed concept, especially suitable for high speed indoor communications and industrial internet of things (IoT) applications. Basing the LIS on smaller panels has clear advantages in terms of flexibility and mass production of its elements. In this paper we consider a panel-based LIS and we study the interplay of the panel size, the number of baseband outputs per square meter of deployed surface, the total activated surface area, the number of baseband outputs per panel, the terminal density and the ensuing minimum terminal rate. Our performance results show that it is desirable to employ smaller panels when the terminal density increases, but this means more outputs per m2, and higher overall LIS implementation complexity. It was observed that we can surpass such increase by working with higher fractions of the LIS area. Furthermore, we present an empirical equation stating the number of outputs per panel needed to ensure that all terminals are reasonably served. These results are useful for the LIS design in practical scenarios.

Original languageEnglish
Title of host publication2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728182988
DOIs
Publication statusPublished - Dec 2020
Event2020 IEEE Global Communications Conference, GLOBECOM 2020 - Virtual, Taipei, Taiwan, Province of China
Duration: 7 Dec 202011 Dec 2020

Publication series

Name2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Volume2020-January

Conference

Conference2020 IEEE Global Communications Conference, GLOBECOM 2020
CountryTaiwan, Province of China
CityVirtual, Taipei
Period7/12/2011/12/20

Keywords

  • Beyond 5G
  • Implementation Complexity
  • Large Intelligent Surfaces (LIS)
  • Massive IoT
  • MU-MIMO

Fingerprint

Dive into the research topics of 'On the Complexity Requirements of a Panel-Based Large Intelligent Surface'. Together they form a unique fingerprint.

Cite this