TY - JOUR
T1 - Ofloxacin@Doxorubicin-Epirubicin functionalized MCM-41 mesoporous silica–based nanocarriers as synergistic drug delivery tools for cancer related bacterial infections
AU - Galhano, Joana
AU - Marcelo, Gonçalo A.
AU - Duarte, Maria Paula
AU - Oliveira, Elisabete
N1 - Funding Information:
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50006%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50006%2F2020/PT#
info:eu-repo/grantAgreement/FCT/OE/PD%2FBD%2F142865%2F2018/PT#
info:eu-repo/grantAgreement/FCT/CEEC IND 2017/CEECIND%2F00648%2F2017%2FCP1462%2FCT0014/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04077%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04077%2F2020/PT#
Publisher Copyright:
© 2021 Elsevier Inc.
PY - 2022/1
Y1 - 2022/1
N2 - Mesoporous silica nanoparticles (MNs) emerged as new promising drug-delivery platforms capable to overcome resistance in bacteria. Dual loading of drugs on these nanocarriers, exploiting synergistic interactions between the nanoparticles and the drugs, could be considered as a way to increase the efficacy against resistant bacteria with a positive effect even at very low concentrations. Considering that patients with cancer are highly susceptible to almost any type of bacterial infections, in this work, nanocarriers mesoporous silica-based, MNs and MNs@EPI were synthetized and submitted to single and/or dual loading of antibiotics (ofloxacin – OFLO) and anticancer drugs (Doxorubicin – DOX; Epirubicin – EPI), and investigated regarding their antibacterial activity against Escherichia coli, Staphylococcus aureus, methicillin–resistant S. aureus (MRSA), Enterococcus faecalis and Pseudomonas aeruginosa. Formulations containing ofloxacin such as MNs-OFLO, MNs-EPI + OFLO, MNs-DOX + OFLO and MNs@EPI + OFLO, present antibacterial activity in all bacterial strains tested. All these are more effective in E.coli with MIC and MBC values for MNs-OFLO, MNs-EPI + OFLO and MNs-DOX + OFLO of around 1 and 2 µgnanomaterial/mL, corresponding to ofloxacin concentrations of 0.03, 0.02 and 0.04 µg/mL, respectively. In the cocktail formulations the conjugation of epirubicin with ofloxacin presents a more effective antibacterial activity with more than 3-fold reduction of ofloxacin concentration when comparing to the single ofloxacin system. By far, the most effective synergistic effect was obtained for the system where epirubicin was functionalized at nanoparticles surface (MNs@EPI), where a 40-fold and 33-fold reductions of ofloxacin concentration were obtained, in P. aeruginosa in comparison to the MNs-OFLO and MNs-EPI + OFLO systems, respectively. These effects are shown in all bacterial strains tested, even in strains that have acquired resistance mechanisms, such as MRSA.
AB - Mesoporous silica nanoparticles (MNs) emerged as new promising drug-delivery platforms capable to overcome resistance in bacteria. Dual loading of drugs on these nanocarriers, exploiting synergistic interactions between the nanoparticles and the drugs, could be considered as a way to increase the efficacy against resistant bacteria with a positive effect even at very low concentrations. Considering that patients with cancer are highly susceptible to almost any type of bacterial infections, in this work, nanocarriers mesoporous silica-based, MNs and MNs@EPI were synthetized and submitted to single and/or dual loading of antibiotics (ofloxacin – OFLO) and anticancer drugs (Doxorubicin – DOX; Epirubicin – EPI), and investigated regarding their antibacterial activity against Escherichia coli, Staphylococcus aureus, methicillin–resistant S. aureus (MRSA), Enterococcus faecalis and Pseudomonas aeruginosa. Formulations containing ofloxacin such as MNs-OFLO, MNs-EPI + OFLO, MNs-DOX + OFLO and MNs@EPI + OFLO, present antibacterial activity in all bacterial strains tested. All these are more effective in E.coli with MIC and MBC values for MNs-OFLO, MNs-EPI + OFLO and MNs-DOX + OFLO of around 1 and 2 µgnanomaterial/mL, corresponding to ofloxacin concentrations of 0.03, 0.02 and 0.04 µg/mL, respectively. In the cocktail formulations the conjugation of epirubicin with ofloxacin presents a more effective antibacterial activity with more than 3-fold reduction of ofloxacin concentration when comparing to the single ofloxacin system. By far, the most effective synergistic effect was obtained for the system where epirubicin was functionalized at nanoparticles surface (MNs@EPI), where a 40-fold and 33-fold reductions of ofloxacin concentration were obtained, in P. aeruginosa in comparison to the MNs-OFLO and MNs-EPI + OFLO systems, respectively. These effects are shown in all bacterial strains tested, even in strains that have acquired resistance mechanisms, such as MRSA.
KW - Antimicrobial resistance
KW - Doxorubicin
KW - Drug delivery
KW - Epirubicin
KW - Mesoporous silica nanoparticles
KW - Ofloxacin
KW - Synergistic effect
UR - http://www.scopus.com/inward/record.url?scp=85119445960&partnerID=8YFLogxK
U2 - 10.1016/j.bioorg.2021.105470
DO - 10.1016/j.bioorg.2021.105470
M3 - Article
C2 - 34814085
AN - SCOPUS:85119445960
SN - 0045-2068
VL - 118
JO - Bioorganic Chemistry
JF - Bioorganic Chemistry
M1 - 105470
ER -