Ockham Algebras—An Urquhart Legacy

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

We highlight the fundamental influence that the work of Alasdair Urquhart has had in the area of distributive lattice-ordered algebras and in particular to the development of Ockham algebras, to which we attach some new results.

Original languageEnglish
Title of host publicationAlasdair Urquhart on Nonclassical and Algebraic Logic and Complexity of Proofs
EditorsIvo Düntsch, Edwin Mares
Place of PublicationCham
PublisherSpringer
Chapter14
Pages367-387
Number of pages21
ISBN (Electronic)978-3-030-71430-7
ISBN (Print)978-3-030-71429-1, 978-3-030-71432-1
DOIs
Publication statusPublished - 2022

Publication series

NameOutstanding Contributions to Logic
PublisherSpringer
Volume22
ISSN (Print)2211-2758
ISSN (Electronic)2211-2766

Keywords

  • Berman class
  • De Morgan algebra
  • Dual space
  • Endomorphism
  • g-cycle
  • Kleene algebra
  • Ockham algebra
  • Subdirectly irreducible
  • Urquhart class

Fingerprint

Dive into the research topics of 'Ockham Algebras—An Urquhart Legacy'. Together they form a unique fingerprint.

Cite this