Object detection for automatic cancer cell counting in zebrafish xenografts

Carina Albuquerque, Leonardo Vanneschi, Roberto Henriques, Mauro Castelli, Vanda Póvoa, Rita Fior, Nickolas Papanikolaou

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)
31 Downloads (Pure)


Cell counting is a frequent task in medical research studies. However, it is often performed manually; thus, it is time-consuming and prone to human error. Even so, cell counting automation can be challenging to achieve, especially when dealing with crowded scenes and overlapping cells, assuming different shapes and sizes. In this paper, we introduce a deep learning-based cell detection and quantification methodology to automate the cell counting process in the zebrafish xenograft cancer model, an innovative technique for studying tumor biology and for personalizing medicine. First, we implemented a fine-tuned architecture based on the Faster R-CNN using the Inception ResNet V2 feature extractor. Second, we performed several adjustments to optimize the process, paying attention to constraints such as the presence of overlapped cells, the high number of objects to detect, the heterogeneity of the cells’ size and shape, and the small size of the data set. This method resulted in a median error of approximately 1% of the total number of cell units. These results demonstrate the potential of our novel approach for quantifying cells in poorly labeled images. Compared to traditional Faster R-CNN, our method improved the average precision from 71% to 85% on the studied data set.
Original languageEnglish
Article numbere0260609
Pages (from-to)1-28
Number of pages28
JournalPLoS ONE
Issue number11
Publication statusPublished - 29 Nov 2021


Dive into the research topics of 'Object detection for automatic cancer cell counting in zebrafish xenografts'. Together they form a unique fingerprint.

Cite this