TY - JOUR
T1 - Numerical Model of Constrained Wave Energy Hyperbaric Converter under Full-Scale Sea Wave Conditions
AU - Brito, Moisés
AU - Bernardo, Francisco
AU - Neves, Maria G.
AU - Neves, Diogo R. C. B.
AU - Crespo, Alejandro J.C.
AU - Domínguez, José M.
N1 - Funding Information:
This research was funded by Fundação para a Ciência e a Tecnologia (FCT.IP) through the grant UIDB/00667/2020 (UNIDEMI). This work was also supported by the project SURVIWEC PID2020-113245RB-I00 and by the project ED431C 2021/44 “Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas”. This study forms part of the Marine Science programme (ThinkInAzul) supported by Ministerio de Ciencia e Innovación and Xunta de Galicia with funding from the European Union NextGenerationEU (PRTR-C17.I1) and European Maritime and Fisheries Fund.
Funding Information:
The authors acknowledge Fundação para a Ciência e a Tecnologia (FCT.IP) for its financial support through the grant UIDB/00667/2020 (UNIDEMI). This work was also supported by the project SURVIWEC PID2020-113245RB-I00 financed by MCIN/AEI/10.13039/501100011033 and by the project ED431C 2021/44 ”Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas” financed by Xunta de Galicia, Consellería de Cultura, Educación e Universidade. This study forms part of the Marine Science programme (ThinkInAzul) supported by Ministerio de Ciencia e Innovación and Xunta de Galicia with funding from the European Union NextGenerationEU (PRTR-C17.I1) and European Maritime and Fisheries Fund.
Publisher Copyright:
© 2022 by the authors.
PY - 2022/10
Y1 - 2022/10
N2 - A 2D numerical investigation of the power absorption of a constrained wave energy hyperbaric converter (WEHC) under full-scale sea wave conditions is presented. A fully non-linear numerical model DualSPHysics, based on the coupling of a smoothed particle hydrodynamics (SPH) fluid solver with a multibody dynamics solver, is used to model the interaction between wave and WEHC sub-systems. The numerical model was first validated against experimental data for a similar device, with a good accordance between PTO position and velocity. The model is then employed to study the hydrodynamics of a constrained WEHC considering several sea states, different hydraulic power take-off (PTO) damping and breakwater geometries. It is observed that the capture width ratio (CWR) is particularly sensitive to variations in the PTO damping, although the CWR absolute maximum is less sensitive considering mild variations applied to the PTO damping. Both wave height and wave period have an important effect on the CWR. The breakwater geometry is also essential for the performance of the WEHC, with a decrease in maximum CWR of about 15% for porous breakwater. These results are necessary to understand the full-scale behaviour of WEHC.
AB - A 2D numerical investigation of the power absorption of a constrained wave energy hyperbaric converter (WEHC) under full-scale sea wave conditions is presented. A fully non-linear numerical model DualSPHysics, based on the coupling of a smoothed particle hydrodynamics (SPH) fluid solver with a multibody dynamics solver, is used to model the interaction between wave and WEHC sub-systems. The numerical model was first validated against experimental data for a similar device, with a good accordance between PTO position and velocity. The model is then employed to study the hydrodynamics of a constrained WEHC considering several sea states, different hydraulic power take-off (PTO) damping and breakwater geometries. It is observed that the capture width ratio (CWR) is particularly sensitive to variations in the PTO damping, although the CWR absolute maximum is less sensitive considering mild variations applied to the PTO damping. Both wave height and wave period have an important effect on the CWR. The breakwater geometry is also essential for the performance of the WEHC, with a decrease in maximum CWR of about 15% for porous breakwater. These results are necessary to understand the full-scale behaviour of WEHC.
KW - constrained optimisation
KW - DualSPHysics
KW - non-linear numerical modelling
KW - power absorption
KW - smoothed particle hydrodynamics (SPH)
KW - wave energy hyperbaric converter (WEHC)
UR - http://www.scopus.com/inward/record.url?scp=85140981968&partnerID=8YFLogxK
U2 - 10.3390/jmse10101489
DO - 10.3390/jmse10101489
M3 - Article
AN - SCOPUS:85140981968
SN - 2077-1312
VL - 10
JO - Journal of Marine Science and Engineering
JF - Journal of Marine Science and Engineering
IS - 10
M1 - 1489
ER -