Numerical and Experimental Analysis of an Inductive Type Fault Current Limiter Using Short-Circuited 2G Tape

Pedro Arsenio, Joao Murta Pina, Anabela Goncalves Pronto, Alfredo Alvarez, Isabel Catarino

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Integrating inductive type fault current limiters (FCLs) in power grids is envisaged to provide effective protection during severe short-circuit fault occurrences. Numerical simulations are an important class of tools for predicting the performance of these devices under those extreme events. For a proper accuracy of simulations, both electromagnetic and thermal phenomena must be considered. The properties of high temperature superconducting (HTS) materials, such as electrical resistivity, heat capacity, thermal conductivity, critical current density, and n index, are strongly dependent on temperature. This is often neglected in transient simulations of devices employing HTS materials, due to unavailability of commercial software easily addressing electromagnetic and thermal interdependence. In this work, the dynamical behavior of a single phase inductive type FCL using a single turn short circuited secondary built of HTS second generation (2G) tape is analyzed by means of a methodology based on the electromagnetic thermal behavior of the constitutive parts of the FCL. This methodology is fully implemented in Matlab/Simulink. The transient response during normal and fault operation of line current, primary linked flux, temperature and current in the 2G tape is simulated and compared to experimental results obtained from a developed prototype. The developed simulation tool provides results in few minutes.

Original languageEnglish
Article number8315503
JournalIEEE Transactions on Applied Superconductivity
Volume28
Issue number5
DOIs
Publication statusPublished - Aug 2018

Keywords

  • Conductivity
  • Electromagnetic coupling
  • Electromagnetics
  • fault current limiters
  • high-temperature superconductors
  • modeling
  • Resistance
  • reverse engineering
  • Superconducting transmission lines
  • Temperature measurement
  • Yttrium barium copper oxide

Fingerprint Dive into the research topics of 'Numerical and Experimental Analysis of an Inductive Type Fault Current Limiter Using Short-Circuited 2G Tape'. Together they form a unique fingerprint.

Cite this