NMR solution structures of two mutants of desulforedoxin

B. J. Goodfellow, F. Rusnak, I. Moura, C. S. Ascenso, José J. G. Moura

Research output: Contribution to journalArticlepeer-review


The differences in geometry at the metal centres in the two known [Fe-4S] proteins rubredoxin (Rd) and desulforedoxin (Dx) are postulated to be a result of the different spacing of the C-terminal cysteine pair in the two proteins. In order to address this question, two mutants of Desulfovibrio gigas Dx with modified cysteinyl spacing were prepared and their solution structures have been determined by NMR. Mutant 1 of Dx (DxM1) has a single glycine inserted between the adjacent cysteines (C28 and C29) found in the wild type Dx sequence. Mutant 3 (DxM3) has two amino acid residues, -P-V-, inserted between C28 and C29 in order to mimic the primary sequence found in Rd from Desulfovibrio gigas. The solution structure of DxM1 exists, like wild type Dx, as a dimer in solution although the single glycine inserted between the adjacent cysteines disrupts the stability of the dimer resulting in exchange between a dimer state and a small population of another, probably monomeric, state. For DxM3 the two amino acid residues inserted between the adjacent cysteines results in a monomeric protein that has a global fold near the metal centre very similar to that found in Rd.

Original languageEnglish
Pages (from-to)100-108
Number of pages9
JournalJournal of Inorganic Biochemistry
Issue number1-2
Publication statusPublished - 1 Jan 2003


  • 3D-structure
  • Desulforedoxin
  • Mutants
  • NMR
  • Rubredoxin type proteins


Dive into the research topics of 'NMR solution structures of two mutants of desulforedoxin'. Together they form a unique fingerprint.

Cite this