TY - JOUR
T1 - New insights into iron-gall inks through the use of historically accurate reconstructions
AU - Díaz Hidalgo, Rafael Javier
AU - Córdoba, Ricardo
AU - Nabais, Paula
AU - Silva, Valéria
AU - Melo, Maria J.
AU - Pina, Fernando
AU - Teixeira, Natércia
AU - Freitas, Victor
N1 - Portuguese Science Foundation, FCT-MCTES: project PTDC/QUI-OUT/29925/2017; post-doctoral scholarship FOOD-RL1-PHD-QUINOA-01-02, CORES PhD programme for PD/BD/105895/2014; scientific infrastructures RECI/QEQ-MED/0330/2012, REM2013 and the Associated Laboratory for Sustainable Chemistry-Clean Processes and Technologies-LAQV, which is financed by national funds from FCT/MEC (UID/QUI/50006/2015) and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007265). Support was also given by the Calouste Gulbenkian Foundation award 'Estimulo a Investigacao 2016' (146301). FEDER funds through COMPETE, POPH/FSE, QREN. The Spanish Ministry of Economy and Competitiveness & the European Regional Development Fund for project HAR2015-67619-P.
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Iron-gall inks have been described as complexes of iron ions with gallic or tannic acids, available in gall extracts. To assess this working hypothesis, we have prepared medieval inks using ingredients and methods appropriate to the fifteenth to seventeenth centuries. The five historical inks studied were selected based upon research into Iberian written sources of medieval techniques. Results are supported by comparison with iron complexes with a well-characterized phenol counterpart: gallic, ellagic, and tannic acids as well as digalloyl and pentagalloyl glucose; as either precipitates or prepared as inks by adding gum arabic. Raman and infrared spectroscopies show that medieval writing inks could not have been represented solely by iron complexes with gallic acid. Overall, writing inks display the infrared signature of gallotannins, indicating that complexes of Fe3+-polygalloyl esters of glucose are also formed. Our results also show that the commercial tannic acid solution is far more complex than the gall extracts, and cannot be used to represent a gall extract (as described in historic written sources). High-performance liquid chromatography–electrospray ionisation, HPLC–ESI–MS, reveals that the concentration of gallic acid varies in the gall extracts, depending on the extraction method and ink recipe. Importantly, in certain recipes, gallic acid is found as a minor compound, when compared with the galloyl esters of glucose.
AB - Iron-gall inks have been described as complexes of iron ions with gallic or tannic acids, available in gall extracts. To assess this working hypothesis, we have prepared medieval inks using ingredients and methods appropriate to the fifteenth to seventeenth centuries. The five historical inks studied were selected based upon research into Iberian written sources of medieval techniques. Results are supported by comparison with iron complexes with a well-characterized phenol counterpart: gallic, ellagic, and tannic acids as well as digalloyl and pentagalloyl glucose; as either precipitates or prepared as inks by adding gum arabic. Raman and infrared spectroscopies show that medieval writing inks could not have been represented solely by iron complexes with gallic acid. Overall, writing inks display the infrared signature of gallotannins, indicating that complexes of Fe3+-polygalloyl esters of glucose are also formed. Our results also show that the commercial tannic acid solution is far more complex than the gall extracts, and cannot be used to represent a gall extract (as described in historic written sources). High-performance liquid chromatography–electrospray ionisation, HPLC–ESI–MS, reveals that the concentration of gallic acid varies in the gall extracts, depending on the extraction method and ink recipe. Importantly, in certain recipes, gallic acid is found as a minor compound, when compared with the galloyl esters of glucose.
KW - Gallotannins
KW - Iberian written sources
KW - Iron-gall inks
KW - Polygalloyl esters of glucose
KW - Reconstructions
UR - http://www.scopus.com/inward/record.url?scp=85056296846&partnerID=8YFLogxK
UR - https://apps.webofknowledge.com/InboundService.do?customersID=RRC&mode=FullRecord&IsProductCode=Yes&product=WOS&Init=Yes&Func=Frame&DestFail=http%3A%2F%2Fwww.webofknowledge.com&action=retrieve&SrcApp=RRC&SrcAuth=RRC&SID=C2RtoRW4TQB2WAJci1p&UT=WOS%3A000449941400001
U2 - 10.1186/s40494-018-0228-8
DO - 10.1186/s40494-018-0228-8
M3 - Article
AN - SCOPUS:85056296846
SN - 2050-7445
VL - 6
JO - Heritage Science
JF - Heritage Science
IS - 1
M1 - 63
ER -