TY - JOUR
T1 - Nanotechnology for cancer diagnostics and therapy - an update on novel molecular players
AU - Fernandes, Alexandra R.
AU - Baptista, Pedro Viana
N1 - Sem PDF.
PY - 2013
Y1 - 2013
N2 - Nanotechnology has emerged as a "disruptive technology" that may provide researchers with new and innovative ways to diagnose, treat and monitor cancer. In fact, nanomedicine approaches have delivered several strategies, such as new imaging agents, real-time assessments of therapeutic and surgical efficacy, multifunctional, targeted devices capable of bypassing biological barriers to target and silence specific pathways in tumours. Of particular interest, has been the increased capability to deliver multiple therapeutic agents directly to bulk cancer cells and cancer stem cells that play a critical role in cancer growth and metastasis. These multifunctional targeted nanoconjugates are also capable of avoiding cancer resistance and monitor predictive molecular changes that open the path for preventive action against pre-cancerous cells, minimizing costs and incidence of relapses. A myriad of nanoconjugates with effective silencing and site-targeting moieties can be developed by incorporating a diverse selection of targeting, diagnostic, and therapeutic components. A discussion of the integrative effort of nanotechnology systems with recent developments of biomolecular interactions in cancer progression is clearly required. Here, we will update the state of the art related to the development and applications of nanoscale platforms and novel biomolecular players in cancer diagnosis, imaging and treatment.
AB - Nanotechnology has emerged as a "disruptive technology" that may provide researchers with new and innovative ways to diagnose, treat and monitor cancer. In fact, nanomedicine approaches have delivered several strategies, such as new imaging agents, real-time assessments of therapeutic and surgical efficacy, multifunctional, targeted devices capable of bypassing biological barriers to target and silence specific pathways in tumours. Of particular interest, has been the increased capability to deliver multiple therapeutic agents directly to bulk cancer cells and cancer stem cells that play a critical role in cancer growth and metastasis. These multifunctional targeted nanoconjugates are also capable of avoiding cancer resistance and monitor predictive molecular changes that open the path for preventive action against pre-cancerous cells, minimizing costs and incidence of relapses. A myriad of nanoconjugates with effective silencing and site-targeting moieties can be developed by incorporating a diverse selection of targeting, diagnostic, and therapeutic components. A discussion of the integrative effort of nanotechnology systems with recent developments of biomolecular interactions in cancer progression is clearly required. Here, we will update the state of the art related to the development and applications of nanoscale platforms and novel biomolecular players in cancer diagnosis, imaging and treatment.
KW - Cancer
KW - Cancer therapy
KW - Imaging
KW - Molecular diagnostics
KW - Nanoimmunochemotherapy
KW - Nanoparticles
KW - Nanosensors
KW - Nanotechnology
KW - SERS
UR - http://www.scopus.com/inward/record.url?scp=84895439537&partnerID=8YFLogxK
U2 - 10.2174/157339470903140220144703
DO - 10.2174/157339470903140220144703
M3 - Article
AN - SCOPUS:84895439537
SN - 1573-3947
VL - 9
SP - 164
EP - 172
JO - Current Cancer Therapy Reviews
JF - Current Cancer Therapy Reviews
IS - 3
ER -