TY - JOUR
T1 - Nanodiagnostics: fast colorimetric method for single nucleotide polymorphism/mutation detection
AU - Baptista, Pedro Miguel Ribeiro Viana
AU - Franco, Ricardo
PY - 2007/1/1
Y1 - 2007/1/1
N2 - Advances in nanosciences are having a significant impact in many areas of research. The impact of new nanotechnologies has been particularly large in biodiagnostics, where a number of nanoparticle-based assays have been introduced for biomolecules detection. To date, applications of nanoparticles have largely focused on DNA-functionalised gold nanoparticles used as the target-specific probes. These gold nanoparticle-based systems can be used for the detection of specific sequences of DNA (pathogen detection, characterisation of mutation and/or single nucleotide polymorphisms) or RNA (without prior retro-transcription and amplification). Here a rapid and inexpensive nanoparticle-based method for single-base mismatch detection (single nucleotide polymorphism/mutation) in DNA samples is reported. Gold nanoparticles derivatised with thiol modified oligonucleotides complementary to DNA targets - Au-nanoprobes - are used to distinguish fully complementary from mismatched sequences, with a single-base mismatch. The authors have successfully applied this strategy to detect common mutations within the beta-globin gene.
AB - Advances in nanosciences are having a significant impact in many areas of research. The impact of new nanotechnologies has been particularly large in biodiagnostics, where a number of nanoparticle-based assays have been introduced for biomolecules detection. To date, applications of nanoparticles have largely focused on DNA-functionalised gold nanoparticles used as the target-specific probes. These gold nanoparticle-based systems can be used for the detection of specific sequences of DNA (pathogen detection, characterisation of mutation and/or single nucleotide polymorphisms) or RNA (without prior retro-transcription and amplification). Here a rapid and inexpensive nanoparticle-based method for single-base mismatch detection (single nucleotide polymorphism/mutation) in DNA samples is reported. Gold nanoparticles derivatised with thiol modified oligonucleotides complementary to DNA targets - Au-nanoprobes - are used to distinguish fully complementary from mismatched sequences, with a single-base mismatch. The authors have successfully applied this strategy to detect common mutations within the beta-globin gene.
U2 - 10.1049/iet-nbt:20070001
DO - 10.1049/iet-nbt:20070001
M3 - Article
SN - 1751-8741
VL - 1
SP - 53
EP - 57
JO - Iet Nanobiotechnology
JF - Iet Nanobiotechnology
IS - 4
ER -