TY - JOUR
T1 - MutT from the fish pathogen Aliivibrio salmonicida is a cold-active nucleotide-pool sanitization enzyme with unexpectedly high thermostability
AU - Lian, Kjersti
AU - Leiros, Hanna Kirsti S
AU - Moe, Elin
PY - 2015
Y1 - 2015
N2 - Upon infection by pathogenic bacteria, production of reactive oxygen species (ROS) is part of the host organism's first line of defence. ROS damage a number of macromolecules, and in order to withstand such a harsh environment, the bacteria need to have well-functioning ROS scavenging and repair systems. Herein, MutT is an important nucleotide-pool sanitization enzyme, which degrades 8-oxo-dGTP and thus prevents it from being incorporated into DNA. In this context, we have performed a comparative biochemical and structural analysis of MutT from the fish pathogen Aliivibrio salmonicida (AsMutT) and the human pathogen Vibrio cholerae (VcMutT), in order to analyse their function as nucleotide sanitization enzymes and also determine possible cold-adapted properties of AsMutT. The biochemical characterisation revealed that both enzymes possess activity towards the 8-oxo-dGTP substrate, and that AsMutT has a higher catalytic efficiency than VcMutT at all temperatures studied. Calculations based on the biochemical data also revealed a lower activation energy (Ea) for AsMutT compared to VcMutT, and differential scanning calorimetry experiments showed that AsMutT displayed an unexpected higher melting temperature (Tm) value than VcMutT. A comparative analysis of the crystal structure of VcMutT, determined to 2.42Å resolution, and homology models of AsMutT indicate that three unique Gly residues in loops of VcMutT, and additional long range ion-pairs in AsMutT could explain the difference in temperature stability of the two enzymes. We conclude that AsMutT is a stable, cold-active enzyme with high catalytic efficiency and reduced Ea, compared to the mesophilic VcMutT.
AB - Upon infection by pathogenic bacteria, production of reactive oxygen species (ROS) is part of the host organism's first line of defence. ROS damage a number of macromolecules, and in order to withstand such a harsh environment, the bacteria need to have well-functioning ROS scavenging and repair systems. Herein, MutT is an important nucleotide-pool sanitization enzyme, which degrades 8-oxo-dGTP and thus prevents it from being incorporated into DNA. In this context, we have performed a comparative biochemical and structural analysis of MutT from the fish pathogen Aliivibrio salmonicida (AsMutT) and the human pathogen Vibrio cholerae (VcMutT), in order to analyse their function as nucleotide sanitization enzymes and also determine possible cold-adapted properties of AsMutT. The biochemical characterisation revealed that both enzymes possess activity towards the 8-oxo-dGTP substrate, and that AsMutT has a higher catalytic efficiency than VcMutT at all temperatures studied. Calculations based on the biochemical data also revealed a lower activation energy (Ea) for AsMutT compared to VcMutT, and differential scanning calorimetry experiments showed that AsMutT displayed an unexpected higher melting temperature (Tm) value than VcMutT. A comparative analysis of the crystal structure of VcMutT, determined to 2.42Å resolution, and homology models of AsMutT indicate that three unique Gly residues in loops of VcMutT, and additional long range ion-pairs in AsMutT could explain the difference in temperature stability of the two enzymes. We conclude that AsMutT is a stable, cold-active enzyme with high catalytic efficiency and reduced Ea, compared to the mesophilic VcMutT.
KW - 8-oxo-dGTP
KW - Cold adaptation
KW - MutT
KW - Nucleotide sanitization
KW - Temperature stability
UR - http://www.scopus.com/inward/record.url?scp=84923145313&partnerID=8YFLogxK
U2 - 10.1016/j.fob.2015.01.006
DO - 10.1016/j.fob.2015.01.006
M3 - Article
AN - SCOPUS:84923145313
VL - 5
SP - 107
EP - 116
JO - FEBS Open Bio
JF - FEBS Open Bio
SN - 2211-5463
ER -