TY - JOUR
T1 - Multiplication is an open bilinear mapping in the banach algebra of functions of bounded wiener p-variation
AU - Canarias, Tiago
AU - Karlovich, Alexei
AU - Shargorodsky, Eugene
N1 - Funding Information:
This work was partially supported by the Funda??o para a Ci?ncia e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UIDB/MAT/00297/2020 (Centro de Matem?tica e Aplica??es).
Publisher Copyright:
© 2021 Michigan State University Press. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Let BVp[0, 1], 1 ≤ p < ∞, be the Banach algebra of functions of bounded p-variation in the sense of Wiener. Recently, Kowalczyk and Turowska [9] proved that the multiplication in BV1[0, 1] is an open bilinear mapping. We extend this result for all values of p ∈ [1, ∞).
AB - Let BVp[0, 1], 1 ≤ p < ∞, be the Banach algebra of functions of bounded p-variation in the sense of Wiener. Recently, Kowalczyk and Turowska [9] proved that the multiplication in BV1[0, 1] is an open bilinear mapping. We extend this result for all values of p ∈ [1, ∞).
KW - Banach algebra of functions of bounded wiener p-variation
KW - Multiplication in a Banach algebra
KW - Open bilinear mapping
UR - http://www.scopus.com/inward/record.url?scp=85125127986&partnerID=8YFLogxK
U2 - 10.14321/realanalexch.46.1.0121
DO - 10.14321/realanalexch.46.1.0121
M3 - Article
AN - SCOPUS:85125127986
SN - 0147-1937
VL - 46
SP - 121
EP - 148
JO - Real Analysis Exchange
JF - Real Analysis Exchange
IS - 1
ER -