TY - JOUR
T1 - Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis
AU - Hassani, Hossein
AU - Rua, António
AU - Silva, Emmanuel Sirimal
AU - Thomakos, Dimitrios
PY - 2019/10/1
Y1 - 2019/10/1
N2 - The literature on mixed-frequency models is relatively recent and has found applications across economics and finance. The standard application in economics considers the use of (usually) monthly variables (e.g. industrial production) for predicting/fitting quarterly variables (e.g. real GDP). This paper proposes a multivariate singular spectrum analysis (MSSA) based method for mixed-frequency interpolation and forecasting, which can be used for any mixed-frequency combination. The novelty of the proposed approach rests on the grounds of simplicity within the MSSA framework. We present our method using a combination of monthly and quarterly series and apply MSSA decomposition and reconstruction to obtain monthly estimates and forecasts for the quarterly series. Our empirical application shows that the suggested approach works well, as it offers forecasting improvements on a dataset of eleven developed countries over the last 50 years. The implications for mixed-frequency modelling and forecasting, and useful extensions of this method, are also discussed.
AB - The literature on mixed-frequency models is relatively recent and has found applications across economics and finance. The standard application in economics considers the use of (usually) monthly variables (e.g. industrial production) for predicting/fitting quarterly variables (e.g. real GDP). This paper proposes a multivariate singular spectrum analysis (MSSA) based method for mixed-frequency interpolation and forecasting, which can be used for any mixed-frequency combination. The novelty of the proposed approach rests on the grounds of simplicity within the MSSA framework. We present our method using a combination of monthly and quarterly series and apply MSSA decomposition and reconstruction to obtain monthly estimates and forecasts for the quarterly series. Our empirical application shows that the suggested approach works well, as it offers forecasting improvements on a dataset of eleven developed countries over the last 50 years. The implications for mixed-frequency modelling and forecasting, and useful extensions of this method, are also discussed.
KW - Forecasting
KW - GDP
KW - Industrial production
KW - Mixed-frequency
KW - Multivariate SSA
UR - http://www.scopus.com/inward/record.url?scp=85068874260&partnerID=8YFLogxK
U2 - 10.1016/j.ijforecast.2019.03.021
DO - 10.1016/j.ijforecast.2019.03.021
M3 - Article
AN - SCOPUS:85068874260
SN - 0169-2070
VL - 35
SP - 1263
EP - 1272
JO - International Journal of Forecasting
JF - International Journal of Forecasting
IS - 4
ER -