TY - JOUR
T1 - Molecular Dynamics of Ethylene Glycol Dimethacrylate Glass Former: Influence of Different Crystallization Pathways
AU - Correia, Natália de Fátima Teixeira
AU - Andrade, Maria Madalena Alves Campos de Sousa Dionísio
PY - 2009/1/1
Y1 - 2009/1/1
N2 - The crystallization induced by different thermal treatments of a low molecular weight glass former, ethylene glycol dimethacrylate (EGDMA), was investigated by dielectric relaxation spectroscopy (DRS) and differential scanning calorimetry (DSC). The fully amorphous material, dielectrically characterized for the first time, exhibits three relaxation processes: the α-relaxation related to dynamic glass transition whose relaxation rate obeys to a VFTH law, and two secondary processes (β and γ) with Arrhenius temperature dependence. Therefore, the evaluation of distinct crystallization pathways driven by different thermal histories was accomplished by monitoring the mobility changes in the multiple dielectric relaxation processes. Besides isothermal cold-crystallization, non-isothermal crystallizations coming from both the melt and the glassy states were induced. While an amorphous fraction, characterized by a glass transition, remains subsequent to crystallization from the melt, no α-relaxation is detected after the material undergoing non-isothermal cold-crystallization. In the latter, the secondary relaxations persist with a new process that evolves at low frequencies, designated as α´ that was also detected at advanced crystallization states under isothermal cold-crystallization. Under the depletion of the α-relaxation, the β process when detected, becomes better resolved keeping the same location prior to crystallization leading to a decoupled temperature dependence relative to the α-process.
AB - The crystallization induced by different thermal treatments of a low molecular weight glass former, ethylene glycol dimethacrylate (EGDMA), was investigated by dielectric relaxation spectroscopy (DRS) and differential scanning calorimetry (DSC). The fully amorphous material, dielectrically characterized for the first time, exhibits three relaxation processes: the α-relaxation related to dynamic glass transition whose relaxation rate obeys to a VFTH law, and two secondary processes (β and γ) with Arrhenius temperature dependence. Therefore, the evaluation of distinct crystallization pathways driven by different thermal histories was accomplished by monitoring the mobility changes in the multiple dielectric relaxation processes. Besides isothermal cold-crystallization, non-isothermal crystallizations coming from both the melt and the glassy states were induced. While an amorphous fraction, characterized by a glass transition, remains subsequent to crystallization from the melt, no α-relaxation is detected after the material undergoing non-isothermal cold-crystallization. In the latter, the secondary relaxations persist with a new process that evolves at low frequencies, designated as α´ that was also detected at advanced crystallization states under isothermal cold-crystallization. Under the depletion of the α-relaxation, the β process when detected, becomes better resolved keeping the same location prior to crystallization leading to a decoupled temperature dependence relative to the α-process.
U2 - 10.1021/jp903208k
DO - 10.1021/jp903208k
M3 - Article
SN - 1520-6106
VL - 113
SP - 14196
EP - 141208
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 43
ER -