TY - JOUR
T1 - Moderate water stress causes different stomatal and non-stomatal changes on the photosynthetic functioning of Phaseolus vulgaris L. genotypes
AU - Lidon, Fernando José Cebola
N1 - Sem PDF conforme Despacho
EU programme SOCRATES-ERASMUS (60911-IC-1-2002-1-BG-ERASMUS-EUC-1)
PY - 2014/1/1
Y1 - 2014/1/1
N2 - The impact of moderate water deficit on the photosynthetic apparatus of three Phaseolus vulgaris L. cultivars, Plovdiv 10 (P10), Dobrudjanski Ran (DR) and Prelom (Prel), was investigated. Water shortage had less impact on leaf hydration, RWC (predawn and midday) and predawn water potential in Prel. RWC and Ψp were more reduced in P10, while there was no osmotic adjustment in any cultivar. Although drought drastically reduced stomatal opening in P10 and DR, reduced Amax indicated non-stomatal limitations that contributed to the negligible Pn. These limitations were on potential thylakoid electron transport rates of PSI and II, pointing to photosystem functioning as a major limiting step in photosynthesis. This agrees with decreases in actual photochemical efficiency of PSII (Fv 0 /Fm0 ), quantum yield of photosynthetic non-cyclic electron transport (/e) and energy-driven photochemical events (qP), although the impact on these parameters would also include down-regulation processes. When compared to DR, Prel retained a higher functional state of the photosynthetic machinery, justifying reduced need for photoprotective mechanisms (non-photochemical quenching, zeaxanthin, lutein, b-carotene) and maintenance of the balance between energy capture and dissipative pigments. The highest increases in fructose, glucose, arabinose and sorbitol in Prel might be related to tolerance to a lower oxidative state. All cultivars had reduced Amax due to daytime stomatal closure in well-watered conditions. Under moderate drought, Prel had highest tolerance, higher leaf hydration and maintenance of important photochemical use of energy. However, water shortage caused appreciable non-stomatal limitations to photosynthesis linked to regulation/imbalance at the metabolic level (and growth) in all cultivars. This included damage, as reflected in decreased potential photosystem functioning, pointing to higher sensitivity of photosynthesis to drought than is commonly assumed.
AB - The impact of moderate water deficit on the photosynthetic apparatus of three Phaseolus vulgaris L. cultivars, Plovdiv 10 (P10), Dobrudjanski Ran (DR) and Prelom (Prel), was investigated. Water shortage had less impact on leaf hydration, RWC (predawn and midday) and predawn water potential in Prel. RWC and Ψp were more reduced in P10, while there was no osmotic adjustment in any cultivar. Although drought drastically reduced stomatal opening in P10 and DR, reduced Amax indicated non-stomatal limitations that contributed to the negligible Pn. These limitations were on potential thylakoid electron transport rates of PSI and II, pointing to photosystem functioning as a major limiting step in photosynthesis. This agrees with decreases in actual photochemical efficiency of PSII (Fv 0 /Fm0 ), quantum yield of photosynthetic non-cyclic electron transport (/e) and energy-driven photochemical events (qP), although the impact on these parameters would also include down-regulation processes. When compared to DR, Prel retained a higher functional state of the photosynthetic machinery, justifying reduced need for photoprotective mechanisms (non-photochemical quenching, zeaxanthin, lutein, b-carotene) and maintenance of the balance between energy capture and dissipative pigments. The highest increases in fructose, glucose, arabinose and sorbitol in Prel might be related to tolerance to a lower oxidative state. All cultivars had reduced Amax due to daytime stomatal closure in well-watered conditions. Under moderate drought, Prel had highest tolerance, higher leaf hydration and maintenance of important photochemical use of energy. However, water shortage caused appreciable non-stomatal limitations to photosynthesis linked to regulation/imbalance at the metabolic level (and growth) in all cultivars. This included damage, as reflected in decreased potential photosystem functioning, pointing to higher sensitivity of photosynthesis to drought than is commonly assumed.
KW - stomatal limitation
KW - photoprotective mechanisms
KW - Down-regulation
KW - water relations
KW - sugars
KW - drought
KW - Down-regulation
KW - drought
KW - photoprotective mechanisms
KW - stomatal limitation
KW - sugars
KW - water relations
U2 - 10.1111/plb.12018
DO - 10.1111/plb.12018
M3 - Article
C2 - 23647987
SN - 1435-8603
VL - 16
SP - 136
EP - 146
JO - Plant Biology
JF - Plant Biology
IS - 1
ER -