TY - JOUR
T1 - Models with commutative orthogonal block structure: a general condition for commutativity
AU - Santos, C.
AU - Nunes, C.
AU - Dias, C.
AU - Mexia, J. T.
N1 - This work was partially supported by national founds of FCT-Foundation for Science and Technology under UID/MAT/00297/2019 and UID/MAT/00212/2019.
PY - 2020
Y1 - 2020
N2 - A linear mixed model whose variance-covariance matrix is a linear combination of known pairwise orthogonal projection matrices that add to the identity matrix, is a model with orthogonal block structure (OBS). OBS have estimators with good behavior for estimable vectors and variance components, moreover it may be interesting that the least squares estimators give the best linear unbiased estimators, for estimable vectors. We can achieve it, requiring commutativity between the orthogonal projection matrix, on the space spanned by the mean vector, and the orthogonal projection matrices involved in the expression of the variance-covariance matrix. This commutativity condition defines a more restrict class of OBS, named COBS (model with commutative orthogonal block structure). With this work we aim to present a commutativity condition, resorting to a special class of matrices, named U-matrices.
AB - A linear mixed model whose variance-covariance matrix is a linear combination of known pairwise orthogonal projection matrices that add to the identity matrix, is a model with orthogonal block structure (OBS). OBS have estimators with good behavior for estimable vectors and variance components, moreover it may be interesting that the least squares estimators give the best linear unbiased estimators, for estimable vectors. We can achieve it, requiring commutativity between the orthogonal projection matrix, on the space spanned by the mean vector, and the orthogonal projection matrices involved in the expression of the variance-covariance matrix. This commutativity condition defines a more restrict class of OBS, named COBS (model with commutative orthogonal block structure). With this work we aim to present a commutativity condition, resorting to a special class of matrices, named U-matrices.
U2 - 10.1080/02664763.2020.1765322
DO - 10.1080/02664763.2020.1765322
M3 - Article
SN - 0266-4763
VL - 47
SP - 2421
EP - 2430
JO - Journal of Applied Statistics
JF - Journal of Applied Statistics
ER -