Mode of action of AraR, the key regulator of L-arabinose metabolism in Bacillus subtilis

Research output: Contribution to journalArticlepeer-review

50 Citations (Scopus)


The AraR protein is a negative regulator involved in L-arabinose-inducible expression of the Bacillus subtilis araABDLMNPQ-abfA metabolic operon and of the araElaraR genes that are organized as a divergent transcriptional unit. The two ara gene clusters are found at different positions in the bacterial chromosome. AraR was overproduced in Escherichia coli and purified to more than 95% homogeneity. AraR binds specifically to DNA fragments carrying the promoter region of the ara genes. DNase I protection assays showed that AraR binds to two sequences within the promoters of the araABDLMNPQ-abfA operon and the araE gene, and to one sequence in the araR promoter. The AraR target sequences are palindromic and share high identity, defining a 16 bp AraR consensus operator sequence showing half-symmetry, ATTTGTAC. Binding of AraR to DNA was inhibited by L-arabinose but not by other sugars. The two operator sites within the araABDLMNPQ-abfA operon and araE promoters are located on the same side of the DNA helix, and a pattern of enhanced and diminished DNase 1 cleavage was observed between them, but not in the araR promoter. Quantitative DNase I footprinting in DNA templates containing one, two or three AraR binding sites showed that the repressor binds cooperatively to the two operator sites within the metabolic operon and araE promoters but not to the site located in the araR promoter. These results are consistent with two modes for AraR transcriptional repression that might correlate with different physiological requirements: a high level of repression is achieved by DNA bending requiring two in-phase operator sequences (metabolic operon and araE transport gene), whereas binding to a single operator, which autoregulates araR expression, is 10-fold less effective.

Original languageEnglish
Pages (from-to)476-489
Number of pages14
JournalMolecular Microbiology
Issue number3
Publication statusPublished - 25 Aug 1999


Dive into the research topics of 'Mode of action of AraR, the key regulator of L-arabinose metabolism in Bacillus subtilis'. Together they form a unique fingerprint.

Cite this