Mobile services for green living

Research output: ThesisDoctoral Thesis

Abstract

Urban cycling is a sustainable transport mode that many cities are promoting. However, few cities are taking advantage of geospatial technologies to represent and analyse behavioural patterns and barriers faced during cycling. This thesis is within the fields of geoinformatics and serious games, and the motivation came from our desire to help both citizens and cities to better understand cyclist behaviour and mobility patterns. We attempted to learn more about the impact of gamified strategies on engagement with cycling, the reasons for choosing between mobile cycling applications and the way such applications would provide commuting information. Furthermore, we explored the potential benefits of offering tools to build decision-making for mobility more transparent, to increase cycling data availability, and to analyse commuting patterns. In general, we found our research useful to enhance green living actions by increasing citizens’ willingness to commute by bicycle or communicating cycling conditions in cities. For urban cycling, data coming from mobile phones can provide a better assessment and enrich the analysis presented in traditional mobility plans. However, the diversity of current mobile applications targeting cyclists does not provide useful data for analysing commuter (inner-city, non-sporting) cycling. Just a few cyclists are adopting these applications as part of their commuting routine, while on the other hand cities are lacking a valuable source of constantly updated cycling information helpful to understand cycling patterns and the role of bicycles in urban transport. This thesis analyses how the incentives of location-based games or geo-games might increase urban cycling engagement and, through this engagement, crowdsource cycling data collection to allow cities to better comprehend cycling patterns. Consequently, the experiment followed a between-groups design to measure the impact of virtual rewards provided by the Cyclist Geo-c application on the levels of intention, satisfaction, and engagement with cycling. Then, to identify the frictions which potentially inhibit bicycle commuting, we analysed the bicycle trips crowdsourced with the geo-game. Our analysis relied on a hexagonal grid of 30-metre cell side to aggregate trip trajectories, calculate the friction intensity and locate the frictions. The thesis reports on the results of an experiment which involved a total of 57 participants in three European cities: M¨unster (Germany), Castell ´o (Spain), and Valletta (Malta). We found participants reported higher satisfaction and engagement with cycling during the experiment in the collaboration condition. However, we did not find a significant impact on the participants’ worldview when it comes to the intentions to start or increase cycling. The results support the use of collaboration-based rewards in the design of game-based applications to promote urban cycling. Furthermore, we validated a procedure to identify not only the cyclists’ preferred streets but also the frictions faced during cycling analysing the crowdsourced trips. We successfully identified 284 places potentially having frictions: 71 in M¨unster, Germany; 70 in Castell ´ o, Spain; and 143 in Valletta, Malta. At such places, participants recorded trip segments at speeds below 5 Km/h indicating a deviation from a hypothetical scenario with a constant cycling speed. This thesis encompasses the cyclist and city perspectives of offering virtual incentives in geo-games and crowdsourcing cycling data collection to better comprehend cycling conditions in cities. We also compiled a set of tools and recommendations for researchers, practitioners, mobile developers, urban planners and cyclist associations interested in fostering sustainable transport and the use of bicycles.
Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • NOVA Information Management School (NOVA IMS)
  • Universidad Jaume I
  • University of Münster
Supervisors/Advisors
  • Gould, Michael, Supervisor, External person
  • Kray, Christian, Supervisor, External person
  • Oliveira, Tiago, Supervisor
Award date23 Nov 2018
Publication statusPublished - 23 Nov 2018

Keywords

  • urban cycling
  • mobile
  • gamification
  • geoinformatics
  • frictions
  • Incentives

Fingerprint

Dive into the research topics of 'Mobile services for green living'. Together they form a unique fingerprint.

Cite this