Abstract
Several organic salts based on the combination of two different choline derivative cations and MnCl3−, GdCl4−and TbCl4−as anions were immobilized in mesoporous silica nanoparticles (MSNs) by a two-step synthetic method. Firstly, MSNs were functionalized with choline derivative cations with chloride anions and then the metals were incorporated by the reaction of the chloride with the respective metal chloride salts. These nanomaterials were fully characterized by different characterization techniques such as1H-NMR, FT-IR, elemental analysis, TEM, TGA, N2adsorption, XRD and DLS. These characterization data were important to confirm the successful functionalization of the nanomaterials and to access their textural properties and colloidal stability. The final materials were also characterized by ICP-MS that indicated the metal contents. The cytotoxicity profile was evaluated in four different cell lines (3T3, 293T, HepG2 and Caco-2), which shows some relevant differences between the metal organic salts and their immobilized analogues.
Original language | English |
---|---|
Pages (from-to) | 8588-8599 |
Number of pages | 12 |
Journal | Dalton Transactions |
Volume | 50 |
Issue number | 24 |
DOIs | |
Publication status | Published - 28 Jun 2021 |