Mapping and modelling malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique

Research output: Contribution to journalArticle

4 Citations (Scopus)
52 Downloads (Pure)

Abstract

Background: Malaria continues to be a major public health concern in Africa. Approximately 3.2 billion people worldwide are still at risk of contracting malaria, and 80% of deaths caused by malaria are concentrated in only 15 countries, most of which are in Africa. These high-burden countries have achieved a lower than average reduction of malaria incidence and mortality, and Mozambique is among these countries. Malaria eradication is therefore one of Mozambique’s main priorities. Few studies on malaria have been carried out in Chimoio, and there is no malaria map risk of the area. This map is important to identify areas at risk for application of Public Precision Health approaches. By using GIS-based spatial modelling techniques, the research goal of this article was to map and model malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. Methods: A 30 m × 30 m Landsat image, ArcGIS 10.2 and BioclimData were used. A conceptual model for spatial problems was used to create the final risk map. The risks factors used were: the mean temperature, precipitation, altitude, slope, distance to water bodies, distance to roads, NDVI, land use and land cover, malaria prevalence and population density. Layers were created in a raster dataset. For class value comparisons between layers, numeric values were assigned to classes within each map layer, giving them the same importance. The input dataset were ranked, with different weights according to their suitability. The reclassified outputs of the data were combined. Results: Chimoio presented 96% moderate risk and 4% high-risk areas. The map showed that the central and south-west “Residential areas”, namely, Centro Hipico, Trangapsso, Bairro 5 and 1º de Maio, had a high risk of malaria, while the rest of the residential areas had a moderate risk. Conclusions: The entire Chimoio population is at risk of contracting malaria, and the precise estimation of malaria risk, therefore, has important precision public health implications and for the planning of effective control measures, such as the proper time and place to spray to combat vectors, distribution of bed nets and other control measures.

Original languageEnglish
Article number795
JournalInternational Journal of Environmental Research and Public Health
Volume15
Issue number4
DOIs
Publication statusPublished - 19 Apr 2018

Fingerprint

Mozambique
Climate
Malaria
Demography
Public Health
Health Planning
Body Water
Population Density

Keywords

  • Malaria risk
  • Mapping
  • Modelling
  • Public precision health

Cite this

@article{4e81e7118a3f4cceb419596e96c9d24b,
title = "Mapping and modelling malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique",
abstract = "Background: Malaria continues to be a major public health concern in Africa. Approximately 3.2 billion people worldwide are still at risk of contracting malaria, and 80{\%} of deaths caused by malaria are concentrated in only 15 countries, most of which are in Africa. These high-burden countries have achieved a lower than average reduction of malaria incidence and mortality, and Mozambique is among these countries. Malaria eradication is therefore one of Mozambique’s main priorities. Few studies on malaria have been carried out in Chimoio, and there is no malaria map risk of the area. This map is important to identify areas at risk for application of Public Precision Health approaches. By using GIS-based spatial modelling techniques, the research goal of this article was to map and model malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. Methods: A 30 m × 30 m Landsat image, ArcGIS 10.2 and BioclimData were used. A conceptual model for spatial problems was used to create the final risk map. The risks factors used were: the mean temperature, precipitation, altitude, slope, distance to water bodies, distance to roads, NDVI, land use and land cover, malaria prevalence and population density. Layers were created in a raster dataset. For class value comparisons between layers, numeric values were assigned to classes within each map layer, giving them the same importance. The input dataset were ranked, with different weights according to their suitability. The reclassified outputs of the data were combined. Results: Chimoio presented 96{\%} moderate risk and 4{\%} high-risk areas. The map showed that the central and south-west “Residential areas”, namely, Centro Hipico, Trangapsso, Bairro 5 and 1º de Maio, had a high risk of malaria, while the rest of the residential areas had a moderate risk. Conclusions: The entire Chimoio population is at risk of contracting malaria, and the precise estimation of malaria risk, therefore, has important precision public health implications and for the planning of effective control measures, such as the proper time and place to spray to combat vectors, distribution of bed nets and other control measures.",
keywords = "Malaria risk, Mapping, Modelling, Public precision health",
author = "Ferr{\~a}o, {Jo{\~a}o L.} and S{\'e}rgio Niquisse and Mendes, {Jorge M.} and Marco Painho",
note = "Ferr{\~a}o, J. L., Niquisse, S., Mendes, J. M., & Painho, M. (2018). Mapping and modelling malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. International Journal of Environmental Research and Public Health, 15(4), [795]. DOI: 10.3390/ijerph15040795",
year = "2018",
month = "4",
day = "19",
doi = "10.3390/ijerph15040795",
language = "English",
volume = "15",
journal = "International Journal of Environmental Research and Public Health",
issn = "1660-4601",
publisher = "Molecular Diversity Preservation International (MDPI)",
number = "4",

}

TY - JOUR

T1 - Mapping and modelling malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique

AU - Ferrão, João L.

AU - Niquisse, Sérgio

AU - Mendes, Jorge M.

AU - Painho, Marco

N1 - Ferrão, J. L., Niquisse, S., Mendes, J. M., & Painho, M. (2018). Mapping and modelling malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. International Journal of Environmental Research and Public Health, 15(4), [795]. DOI: 10.3390/ijerph15040795

PY - 2018/4/19

Y1 - 2018/4/19

N2 - Background: Malaria continues to be a major public health concern in Africa. Approximately 3.2 billion people worldwide are still at risk of contracting malaria, and 80% of deaths caused by malaria are concentrated in only 15 countries, most of which are in Africa. These high-burden countries have achieved a lower than average reduction of malaria incidence and mortality, and Mozambique is among these countries. Malaria eradication is therefore one of Mozambique’s main priorities. Few studies on malaria have been carried out in Chimoio, and there is no malaria map risk of the area. This map is important to identify areas at risk for application of Public Precision Health approaches. By using GIS-based spatial modelling techniques, the research goal of this article was to map and model malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. Methods: A 30 m × 30 m Landsat image, ArcGIS 10.2 and BioclimData were used. A conceptual model for spatial problems was used to create the final risk map. The risks factors used were: the mean temperature, precipitation, altitude, slope, distance to water bodies, distance to roads, NDVI, land use and land cover, malaria prevalence and population density. Layers were created in a raster dataset. For class value comparisons between layers, numeric values were assigned to classes within each map layer, giving them the same importance. The input dataset were ranked, with different weights according to their suitability. The reclassified outputs of the data were combined. Results: Chimoio presented 96% moderate risk and 4% high-risk areas. The map showed that the central and south-west “Residential areas”, namely, Centro Hipico, Trangapsso, Bairro 5 and 1º de Maio, had a high risk of malaria, while the rest of the residential areas had a moderate risk. Conclusions: The entire Chimoio population is at risk of contracting malaria, and the precise estimation of malaria risk, therefore, has important precision public health implications and for the planning of effective control measures, such as the proper time and place to spray to combat vectors, distribution of bed nets and other control measures.

AB - Background: Malaria continues to be a major public health concern in Africa. Approximately 3.2 billion people worldwide are still at risk of contracting malaria, and 80% of deaths caused by malaria are concentrated in only 15 countries, most of which are in Africa. These high-burden countries have achieved a lower than average reduction of malaria incidence and mortality, and Mozambique is among these countries. Malaria eradication is therefore one of Mozambique’s main priorities. Few studies on malaria have been carried out in Chimoio, and there is no malaria map risk of the area. This map is important to identify areas at risk for application of Public Precision Health approaches. By using GIS-based spatial modelling techniques, the research goal of this article was to map and model malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. Methods: A 30 m × 30 m Landsat image, ArcGIS 10.2 and BioclimData were used. A conceptual model for spatial problems was used to create the final risk map. The risks factors used were: the mean temperature, precipitation, altitude, slope, distance to water bodies, distance to roads, NDVI, land use and land cover, malaria prevalence and population density. Layers were created in a raster dataset. For class value comparisons between layers, numeric values were assigned to classes within each map layer, giving them the same importance. The input dataset were ranked, with different weights according to their suitability. The reclassified outputs of the data were combined. Results: Chimoio presented 96% moderate risk and 4% high-risk areas. The map showed that the central and south-west “Residential areas”, namely, Centro Hipico, Trangapsso, Bairro 5 and 1º de Maio, had a high risk of malaria, while the rest of the residential areas had a moderate risk. Conclusions: The entire Chimoio population is at risk of contracting malaria, and the precise estimation of malaria risk, therefore, has important precision public health implications and for the planning of effective control measures, such as the proper time and place to spray to combat vectors, distribution of bed nets and other control measures.

KW - Malaria risk

KW - Mapping

KW - Modelling

KW - Public precision health

UR - http://www.scopus.com/inward/record.url?scp=85045927404&partnerID=8YFLogxK

U2 - 10.3390/ijerph15040795

DO - 10.3390/ijerph15040795

M3 - Article

VL - 15

JO - International Journal of Environmental Research and Public Health

JF - International Journal of Environmental Research and Public Health

SN - 1660-4601

IS - 4

M1 - 795

ER -