TY - JOUR
T1 - Mannitol-1-phosphate dehydrogenases/phosphatases
T2 - A family of novel bifunctional enzymes for bacterial adaptation to osmotic stress
AU - Sand, Miriam
AU - Rodrigues, Marta
AU - González, José M.
AU - de Crécy-Lagard, Valérie
AU - Santos, Maria Helena
AU - Müller, Volker
AU - Averhoff, Beate
PY - 2015/3/1
Y1 - 2015/3/1
N2 - The nutritionally versatile soil bacterium Acinetobacter baylyiADP1 copes with salt stress by the accumulation of compatible solutes, a strategy that is widespread in nature. This bacterium synthesizes the sugar alcohol mannitol de novo in response to osmotic stress. In a previous study, we identified MtlD, a mannitol-1-phosphate dehydrogenase, which is essential for mannitol biosynthesis and which catalyses the first step in mannitol biosynthesis, the reduction of fructose-6-phosphate (F-6-P) to the intermediate mannitol-1-phosphate (Mtl-1-P). Until now, the identity of the second enzyme, the phosphatase that catalyses the dephosphorylation of Mtl-1-P to mannitol, was elusive. Here we show that MtlD has a unique sequence among known mannitol-1-phosphate dehydrogenases with a haloacid dehalogenase (HAD)-like phosphatase domain at the N-terminus. This domain is indeed shown to have a phosphatase activity. Phosphatase activity is strictly Mg2+ dependent. Nuclear magnetic resonance analysis revealed that purified MtlD catalyses not only reduction of F-6-P but also dephosphorylation of Mtl-1-P. MtlD of A.baylyi is the first bifunctional enzyme of mannitol biosynthesis that combines Mtl-1-P dehydrogenase and phosphatase activities in a single polypeptide chain. Bioinformatic analysis revealed that the bifunctional enzyme is widespread among Acinetobacter strains but only rarely present in other phylogenetic tribes.
AB - The nutritionally versatile soil bacterium Acinetobacter baylyiADP1 copes with salt stress by the accumulation of compatible solutes, a strategy that is widespread in nature. This bacterium synthesizes the sugar alcohol mannitol de novo in response to osmotic stress. In a previous study, we identified MtlD, a mannitol-1-phosphate dehydrogenase, which is essential for mannitol biosynthesis and which catalyses the first step in mannitol biosynthesis, the reduction of fructose-6-phosphate (F-6-P) to the intermediate mannitol-1-phosphate (Mtl-1-P). Until now, the identity of the second enzyme, the phosphatase that catalyses the dephosphorylation of Mtl-1-P to mannitol, was elusive. Here we show that MtlD has a unique sequence among known mannitol-1-phosphate dehydrogenases with a haloacid dehalogenase (HAD)-like phosphatase domain at the N-terminus. This domain is indeed shown to have a phosphatase activity. Phosphatase activity is strictly Mg2+ dependent. Nuclear magnetic resonance analysis revealed that purified MtlD catalyses not only reduction of F-6-P but also dephosphorylation of Mtl-1-P. MtlD of A.baylyi is the first bifunctional enzyme of mannitol biosynthesis that combines Mtl-1-P dehydrogenase and phosphatase activities in a single polypeptide chain. Bioinformatic analysis revealed that the bifunctional enzyme is widespread among Acinetobacter strains but only rarely present in other phylogenetic tribes.
UR - http://www.scopus.com/inward/record.url?scp=84925163905&partnerID=8YFLogxK
U2 - 10.1111/1462-2920.12503
DO - 10.1111/1462-2920.12503
M3 - Article
C2 - 24800891
AN - SCOPUS:84925163905
SN - 1462-2912
VL - 17
SP - 711
EP - 719
JO - Environmental Microbiology
JF - Environmental Microbiology
IS - 3
ER -