Abstract

As the productivity and quality of tomato fruits are responsive to Mg applications, without surpassing the threshold of toxicity, the assessment of potential levels of Mg accumulation in tissues, as well as the interactions with Ca and physicochemical properties, prompt this study. An agronomic workflow for Mg enrichment, consisting of six foliar applications of MgSO4 with four concentrations (0%, 0.25%, 1% and 4%), equivalent to 0, 43.9, 175.5 and 702 g ha−1, was applied on two tomato (Lycopersicum esculentum L.) genotypes (Heinz1534 and Heinz9205). During fruit development, leaf gas exchange was screened, with only minor physiological deviations being found. At harvest, Mg contents among tissues and the interactions with Ca were analyzed, and it was found that in both varieties a higher Mg/Ca ratio prevailed in the most external part of the fruit sprayed with 4% MgSO4. However, Mg distribution prevailed relatively near the epidermis in H1534, while in H9205 the higher contents of this nutrient occurred in the core of the fruit, which indicated a decrease of the relative proportion of Ca. The morphologic (height and diameter), physical (dry weight and density) and colorimetric parameters, and the total soluble solids of fruits, did not reveal significant changes in both tomato varieties. It was further concluded that foliar application until 4% MgSO4 does not have physiological impacts in the fruit’s quality of both varieties, but in spite of the different patterns of Mg accumulation in tissues, if the mean value in the whole fruit is considered, this nutrient prevails in H1534. This study thus suggests that variety H1534 can be used to attain tomato fruits with added value, providing an option of further processing to achieve food products with functional properties, ultimately proving a beneficial option to producers, the food processing industry and consumers. Moreover, the study reinforces the importance of variety choice when designing enrichment workflows.

Original languageEnglish
Article number1854
Number of pages14
JournalPlants
Volume11
Issue number14
DOIs
Publication statusPublished - Jul 2022

Keywords

  • leaf gas exchange
  • Lycopersicum esculentumL
  • magnesium accumulation
  • physicochemical parameters
  • tomato varieties

Fingerprint

Dive into the research topics of 'Magnesium Accumulation in Two Contrasting Varieties of Lycopersicum esculentum L. Fruits: Interaction with Calcium at Tissue Level and Implications on Quality'. Together they form a unique fingerprint.

Cite this