Low temperature restoring effect on F508del-CFTR misprocessing: A proteomic approach

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)


To gain insight into the proteins potentially involved in the low temperature-induced F508del-CFTR rescue process, we have explored by two-dimensional electrophoresis (2DE) the proteome of BHK cell lines expressing wt or F508del-CFTR, grown at 37 degrees C or 26 degrees C/24 h or 26 degrees C/48 h followed by 3 h of metabolic labelling with [S-35]-methionine. A set of 139 protein spots (yielding 125 mass spectrometry identifications) was identified as differentially expressed (p ANOVA<0.05) among the six phenotypic groups analysed. The data analysis suggests that the unfolded protein response (UPR) induction and some cell-metabolism repression are the major cold-shock responses that may generate a favourable cellular environment to promote F508del-CFTR rescue. Down-regulation of proteasome regulatory PA28 and/or COP9 signalosome subunit, both involved in CFTR degradation, could also be a relevant cold-shock-induced condition for F508de-CFTR rescue. Moreover, cold-shock may promote the reestablishment of some proteostasis imbalance associated with over-expression of F508del-CFTR. In B14K-F508del cells, the deregulation of RACK1, a protein described to be important for stable expression of CFTR in the plasma membrane, is partially repaired after low temperature treatment. Together these findings give new insights about F508del-CFTR rescue by low temperature treatment and the proteins involved could ultimately constitute potential therapeutic targets in CF disease
Original languageUnknown
Pages (from-to)218-230
JournalJournal of Proteomics
Issue number2
Publication statusPublished - 1 Jan 2009

Cite this