Linking Nematode Communities and Soil Health under Climate Change

David Pires, Valeria Orlando, Raymond L. Collett, David Moreira, Sofia R. Costa, Maria L. Inácio

Research output: Contribution to journalReview articlepeer-review

4 Citations (Scopus)
3 Downloads (Pure)

Abstract

Soil health is intimately intertwined with ecosystem services. Climate change negatively impacts ecosystem functioning, by altering carbon and nitrogen biogeochemical cycles and shifting nutrient bioavailability, thus hampering food production and exacerbating biodiversity loss. Soil ecosystem services are provided by belowground biota, and as the most abundant metazoans on Earth, nematodes are key elements of soil food webs and reliable bioindicators of soil health. Here, we carry out a literature review from 2019, the year that the Intergovernmental Panel on Climate Change published a report relating and expressing serious concerns on the effects of climate change on the land degradation and sustainability of terrestrial ecosystems. We focus on documenting and discussing the composition of nematode communities contributing to improving soil health, and soil management practices to promote their presence and limit the effects of climate change on soils. By recognizing beneficial nematodes as plant-promoting agents, we could harness their potential to our benefit, catalyze decomposition services, improve plant performance, and increase carbon sequestration. This way, we will contribute to soil health and a well-balanced and well-managed system, making it possible to increase productivity, guarantee food security, and reduce the yield gap, with a limited human footprint on the environment.

Original languageEnglish
Article number11747
JournalSustainability (Switzerland)
Volume15
Issue number15
DOIs
Publication statusPublished - Aug 2023

Keywords

  • abiotic stress
  • beneficial nematodes
  • ecosystem services
  • food webs
  • functional ecology
  • soil health
  • soil microfauna

Fingerprint

Dive into the research topics of 'Linking Nematode Communities and Soil Health under Climate Change'. Together they form a unique fingerprint.

Cite this