TY - JOUR
T1 - Leishmania 360°:
T2 - Guidelines for exosomal research
AU - Gabriel, Áurea Martins
AU - Galué-Parra, Adan
AU - Pereira, Washington Luiz Assunção
AU - Pedersen, Ketil Winther
AU - da Silva, Edilene Oliveira
N1 - Funding Information:
Funding: This research was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES) and by the Portuguese Foundation for Science and Technology (FCT), through the research project GHTM–UID/Multi/04413/2013 and Portugal-Brazil research project PTDC/SAU-PAR/28459/2017 EXOTRYPANO IHMT-NOVA/FMV-ULisboa/UFRN.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/10/2
Y1 - 2021/10/2
N2 - Leishmania parasites are a group of kinetoplastid pathogens that cause a variety of clinical disorders while maintaining cell communication by secreting extracellular vesicles. Emerging technologies have been adapted for the study of Leishmania-host cell interactions, to enable the broad-scale analysis of the extracellular vesicles of this parasite. Leishmania extracellular vesicles (LEVs) are spheroidal nanoparticles of polydispersed suspensions surrounded by a layer of lipid membrane. Although LEVs have attracted increasing attention from researchers, many aspects of their biology remain unclear, including their bioavailability and function in the complex molecular mechanisms of pathogenesis. Given the importance of LEVs in the parasite-host interaction, and in the parasite-parasite relationships that have emerged during the evolutionary history of these organisms, the present review provides an overview of the available data on Leishmania, and formulates guidelines for LEV research. We conclude by reporting direct methods for the isolation of specific LEVs from the culture supernatant of the promastigotes and amastigotes that are suitable for a range of different downstream applications, which increases the compatibility and reproducibility of the approach for the establishment of optimal and comparable isolation conditions and the complete characterization of the LEV, as well as the critical immunomodulatory events triggered by this important group of parasites.
AB - Leishmania parasites are a group of kinetoplastid pathogens that cause a variety of clinical disorders while maintaining cell communication by secreting extracellular vesicles. Emerging technologies have been adapted for the study of Leishmania-host cell interactions, to enable the broad-scale analysis of the extracellular vesicles of this parasite. Leishmania extracellular vesicles (LEVs) are spheroidal nanoparticles of polydispersed suspensions surrounded by a layer of lipid membrane. Although LEVs have attracted increasing attention from researchers, many aspects of their biology remain unclear, including their bioavailability and function in the complex molecular mechanisms of pathogenesis. Given the importance of LEVs in the parasite-host interaction, and in the parasite-parasite relationships that have emerged during the evolutionary history of these organisms, the present review provides an overview of the available data on Leishmania, and formulates guidelines for LEV research. We conclude by reporting direct methods for the isolation of specific LEVs from the culture supernatant of the promastigotes and amastigotes that are suitable for a range of different downstream applications, which increases the compatibility and reproducibility of the approach for the establishment of optimal and comparable isolation conditions and the complete characterization of the LEV, as well as the critical immunomodulatory events triggered by this important group of parasites.
KW - Exosomal research guidelines
KW - Intercellular communication and host manipulation
KW - Isolation and description of exosomes
KW - Leishmania extracellular vesicle cargo
KW - Leishmaniasis
UR - http://www.scopus.com/inward/record.url?scp=85116238533&partnerID=8YFLogxK
U2 - 10.3390/microorganisms9102081
DO - 10.3390/microorganisms9102081
M3 - Review article
C2 - 34683402
AN - SCOPUS:85116238533
SN - 2076-2607
VL - 9
SP - 1
EP - 29
JO - Microorganisms
JF - Microorganisms
IS - 10
M1 - 2081
ER -