Lanthanide-based complexes as efficient physiological temperature sensors

Bernardo Monteiro, João Paulo Leal, Ricardo F. Mendes, Filipe A. Almeida Paz, Anthony Linden, Volodymyr Smetana, Anja V. Mudring, João Avó, Cláudia C. L. Pereira

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


A new molecular thermometric sensor based on the terbium(III) complex [C2mim][Tb(fod)4] (C2mim – 1-methyl-3-ethylimidazolium, fod - tetrakis-6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate), doped with 0.015% of its europium(III) analogue (1, [C2mim][Tb(fod)4]0.99985:[C2mim][Eu(fod)4]0.00015), was prepared and its thermochromic behaviour evaluated from ambient temperature up to 75 °C, including in the physiological range (35–45 °C). It was found that the intensity ratio of the 5D47F5 (TbIII) and 5D07F2 (EuIII) transitions is correlated with temperature having three different linear regimes. Visual colorimetry allowed the evaluation of the temperature in different ranges from green at ambient temperature, to yellow and finally red at higher temperatures. The TbIII complex emission intensity is extremely sensitive to small temperature variations, particularly between 25 and 35 °C, were it reaches only 40% of the initial intensity. Confinement of the dopped TbIII tetrakis-complex in the organic polymeric matrix poly(methylmethacrylate) (PMMA) induced higher thermal stability in 1, together with a strong temperature dependence of the most intense emissive transition of the TbIII complexes. The photoluminescence quantum yield of polymer-lanthanide hybrid materials increased significantly compared with that of 1. Under 366 nm irradiation, the hybrid material presents a green colour at 25 °C that evolves to yellow at 30 °C and to a white tone at 35 °C.

Original languageEnglish
Article number125424
JournalMaterials Chemistry And Physics
Publication statusPublished - 1 Feb 2022


  • Luminescence
  • Poly(methyl)methacrylate
  • Terbium
  • Thermochromism
  • Thermometry


Dive into the research topics of 'Lanthanide-based complexes as efficient physiological temperature sensors'. Together they form a unique fingerprint.

Cite this