Key issues in incorporating proximal and remote sensor data into farm decision-making

Manuela Simões, Adélia M. O. Sousa, José R. Marques da Silva, João Serrano, Shakib Shahidian, Duarte Lobo da Silveira, Ana Cristina Gonçalves, Maria João P. Caldinhas, Vasco Fitas da Cruz, Arilson J. de Oliveira Júnior, Silvia R. Lucas de Souza, Diogo R. Coelho, Patrícia Lourenço, Fátima F. Baptista

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

This chapter presents five study cases on the application of smart technologies in farming and forestry systems. The first of these study cases presents the results of a long-term study to calibrate a Grassmaster II capacitance probe to estimate pasture productivity in the Mediterranean Montado ecosystem. The second case study presents a methodology for identifying yield zones within an olive grove based on Sentinel-2 satellite data. The third case study provides an overview of different remote sensing sensors, data and methodologies used for estimating forest biomass. The fourth case study assesses the carbon footprint of horticultural crops such as potato, onion, carrot, melon and watermelon. The final case study focuses on precision livestock farming, specifically a mobile application focused on thermal comfort.
Original languageEnglish
Title of host publicationSmart farms
Subtitle of host publicationImproving data-driven decision making in agriculture
EditorsClaus Gron Sorensen
Place of PublicationCambridge, UK
PublisherBurleigh Dodds Science Publishing, Cambridge, UK
Pages39- 74
Number of pages36
ISBN (Print)978 1 80146 382 9
DOIs
Publication statusPublished - 23 Apr 2024

Cite this