TY - JOUR
T1 - Integration of FTIR Spectroscopy and Machine Learning for Kidney Allograft Rejection
T2 - A Complementary Diagnostic Tool
AU - Ramalhete, Luís
AU - Araújo, Rúben
AU - Vieira, Miguel Bigotte
AU - Vigia, Emanuel
AU - Aires, Inês
AU - Ferreira, Aníbal
AU - Calado, Cecília R.C.
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/2
Y1 - 2025/2
N2 - Background: Kidney transplantation is a life-saving treatment for end-stage kidney disease, but allograft rejection remains a critical challenge, requiring accurate and timely diagnosis. The study aims to evaluate the integration of Fourier Transform Infrared (FTIR) spectroscopy and machine learning algorithms as a minimally invasive method to detect kidney allograft rejection and differentiate between T Cell-Mediated Rejection (TCMR) and Antibody-Mediated Rejection (AMR). Additionally, the goal is to discriminate these rejection types aiming to develop a reliable decision-making support tool. Methods: This retrospective study included 41 kidney transplant recipients and analyzed 81 serum samples matched to corresponding allograft biopsies. FTIR spectroscopy was applied to pre-biopsy serum samples, and Naïve Bayes classification models were developed to distinguish rejection from non-rejection and classify rejection types. Data preprocessing involved, e.g., atmospheric compensation, second derivative, and feature selection using Fast Correlation-Based Filter for spectral regions 600–1900 cm−1 and 2800–3400 cm−1. Model performance was assessed via area under the receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, and accuracy. Results: The Naïve Bayes model achieved an AUC-ROC of 0.945 in classifying rejection versus non-rejection and AUC-ROC of 0.989 in distinguishing TCMR from AMR. Feature selection significantly improved model performance, identifying key spectral wavenumbers associated with rejection mechanisms. This approach demonstrated high sensitivity and specificity for both classification tasks. Conclusions: The integration of FTIR spectroscopy with machine learning may provide a promising, minimally invasive method for early detection and precise classification of kidney allograft rejection. Further validation in larger, more diverse populations is needed to confirm these findings’ reliability.
AB - Background: Kidney transplantation is a life-saving treatment for end-stage kidney disease, but allograft rejection remains a critical challenge, requiring accurate and timely diagnosis. The study aims to evaluate the integration of Fourier Transform Infrared (FTIR) spectroscopy and machine learning algorithms as a minimally invasive method to detect kidney allograft rejection and differentiate between T Cell-Mediated Rejection (TCMR) and Antibody-Mediated Rejection (AMR). Additionally, the goal is to discriminate these rejection types aiming to develop a reliable decision-making support tool. Methods: This retrospective study included 41 kidney transplant recipients and analyzed 81 serum samples matched to corresponding allograft biopsies. FTIR spectroscopy was applied to pre-biopsy serum samples, and Naïve Bayes classification models were developed to distinguish rejection from non-rejection and classify rejection types. Data preprocessing involved, e.g., atmospheric compensation, second derivative, and feature selection using Fast Correlation-Based Filter for spectral regions 600–1900 cm−1 and 2800–3400 cm−1. Model performance was assessed via area under the receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, and accuracy. Results: The Naïve Bayes model achieved an AUC-ROC of 0.945 in classifying rejection versus non-rejection and AUC-ROC of 0.989 in distinguishing TCMR from AMR. Feature selection significantly improved model performance, identifying key spectral wavenumbers associated with rejection mechanisms. This approach demonstrated high sensitivity and specificity for both classification tasks. Conclusions: The integration of FTIR spectroscopy with machine learning may provide a promising, minimally invasive method for early detection and precise classification of kidney allograft rejection. Further validation in larger, more diverse populations is needed to confirm these findings’ reliability.
KW - biomarkers
KW - FTIR spectroscopy
KW - kidney allograft
KW - machine learning
KW - rejection
UR - http://www.scopus.com/inward/record.url?scp=85217811866&partnerID=8YFLogxK
U2 - 10.3390/jcm14030846
DO - 10.3390/jcm14030846
M3 - Article
AN - SCOPUS:85217811866
SN - 2077-0383
VL - 14
JO - Journal of Clinical Medicine
JF - Journal of Clinical Medicine
IS - 3
M1 - 846
ER -