Insights of antiparasitic activity of sodium diethyldithiocarbamate against different strains of Trypanosoma cruzi

Johny Wysllas de Freitas Oliveira, Taffarel Melo Torres, Cláudia Jassica Gonçalves Moreno, Bruno Amorim-Carmo, Igor Zumba Damasceno, Ana Katarina Menezes Cruz Soares, Jefferson da Silva Barbosa, Hugo Alexandre Oliveira Rocha, Marcelo Sousa Silva

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
4 Downloads (Pure)


Chagas disease is caused by Trypanosoma cruzi and affects thousands of people. Drugs currently used in therapy are toxic and have therapeutic limitations. In addition, the genetic diversity of T. cruzi represents an important variable and challenge in treatment. Sodium diethyldithiocarbamate (DETC) is a compound with pharmacological versatility acting as metal chelators and ROS generation. Thus, the objective was to characterize the antiparasitic action of DETC against different strains and forms of T. cruzi and their mechanism. The different strains of T. cruzi were grown in LIT medium. To evaluate the antiparasitic activity of DETC, epimastigote and trypomastigote forms of T. cruzi were used by resazurin reduction methods and by counting. Different response patterns were obtained between the strains and an IC50 of DETC ranging from 9.44 ± 3,181 to 60.49 ± 7.62 µM. Cell cytotoxicity against 3T3 and RAW cell lines and evaluated by MTT, demonstrated that DETC in high concentration (2222.00 µM) presents low toxicity. Yet, DETC causes mitochondrial damage in T. cruzi, as well as disruption in parasite membrane. DETC has antiparasitic activity against different genotypes and forms of T. cruzi, therefore, representing a promising molecule as a drug for the treatment of Chagas disease.

Original languageEnglish
Article number11200
JournalScientific Reports
Issue number1
Publication statusPublished - Dec 2021


Dive into the research topics of 'Insights of antiparasitic activity of sodium diethyldithiocarbamate against different strains of Trypanosoma cruzi'. Together they form a unique fingerprint.

Cite this