Injectable composite systems based on microparticles in hydrogels for bioactive cargo controlled delivery

Research output: Contribution to journalReview articlepeer-review

12 Citations (Scopus)
16 Downloads (Pure)


Engineering drug delivery systems (DDS) aim to release bioactive cargo to a specific site within the human body safely and efficiently. Hydrogels have been used as delivery matrices in different studies due to their biocompatibility, biodegradability, and versatility in biomedical purposes. Microparticles have also been used as drug delivery systems for similar reasons. The combination of microparticles and hydrogels in a composite system has been the topic of many research works. These composite systems can be injected in loco as DDS. The hydrogel will serve as a barrier to protect the particles and retard the release of any bioactive cargo within the particles. Additionally, these systems allow different release profiles, where different loads can be released sequentially, thus allowing a synergistic treatment. The reported advantages from several studies of these systems can be of great use in biomedicine for the development of more effective DDS. This review will focus on in situ injectable microparticles in hydrogel composite DDS for biomedical purposes, where a compilation of different studies will be analysed and reported herein.

Original languageEnglish
Article number147
Issue number3
Publication statusPublished - 18 Sept 2021


  • Bioactive cargo
  • Biomedical applications
  • Drug delivery systems
  • Hydrogels
  • Microparticles


Dive into the research topics of 'Injectable composite systems based on microparticles in hydrogels for bioactive cargo controlled delivery'. Together they form a unique fingerprint.

Cite this