TY - JOUR
T1 - Increased sensitivity in a-SiC pinpin multilayers in the VIS-NIR range under UV light
AU - Silva, V.
AU - Rodrigues, I.
AU - Vieira, Maria Manuela
AU - Louro, P.
AU - Vieira, Maria Manuela
N1 - Sem PDF.
PY - 2014
Y1 - 2014
N2 - In this paper we experimentally demonstrate the use of near-ultraviolet steady state illumination to increase the spectral sensitivity of a double a-SiC/Si pi'n/pin photodiode beyond the visible spectrum (400 nm-880 nm). The concept is extended to implement a one by four wavelength division multiplexer with channel separation in the visible/near infrared range. Optoelectronic characterization of the device is presented and shows the feasibility of tailoring the wavelength and bandwidth of a polychromatic mixture. Several monochromatic pulsed lights in the VIS/NIR range, separately or in a polychromatic mixture illuminated the device. Independent tuning of the wavelengths is performed by steady state 390 nm optical bias superimposed from front and back sides. Results show that, front background enhances the light-to-dark sensitivity of the medium, long and infrared wavelength channels, and quench strongly the shorter wavelengths. Back background has the opposite effect; it only enhances the channel magnitude in short wavelength range and strongly reduces it in the long ones. This nonlinearity provides the possibility for selective tuning a specific wavelength. A capacitive optoelectronic model supports the experimental results. A numerical simulation is presented.
AB - In this paper we experimentally demonstrate the use of near-ultraviolet steady state illumination to increase the spectral sensitivity of a double a-SiC/Si pi'n/pin photodiode beyond the visible spectrum (400 nm-880 nm). The concept is extended to implement a one by four wavelength division multiplexer with channel separation in the visible/near infrared range. Optoelectronic characterization of the device is presented and shows the feasibility of tailoring the wavelength and bandwidth of a polychromatic mixture. Several monochromatic pulsed lights in the VIS/NIR range, separately or in a polychromatic mixture illuminated the device. Independent tuning of the wavelengths is performed by steady state 390 nm optical bias superimposed from front and back sides. Results show that, front background enhances the light-to-dark sensitivity of the medium, long and infrared wavelength channels, and quench strongly the shorter wavelengths. Back background has the opposite effect; it only enhances the channel magnitude in short wavelength range and strongly reduces it in the long ones. This nonlinearity provides the possibility for selective tuning a specific wavelength. A capacitive optoelectronic model supports the experimental results. A numerical simulation is presented.
KW - sensor
KW - simulation
KW - thin film
UR - http://www.scopus.com/inward/record.url?scp=84926309893&partnerID=8YFLogxK
U2 - 10.1557/opl.2014.719
DO - 10.1557/opl.2014.719
M3 - Conference article
AN - SCOPUS:84926309893
SN - 0272-9172
VL - 1666
JO - Materials Research Society Symposium Proceedings
JF - Materials Research Society Symposium Proceedings
T2 - 2014 MRS Spring Meeting
Y2 - 21 April 2014 through 25 April 2014
ER -