Abstract
Proper working conditions must be one of the employers’ main concerns in any type of company but particularly in work locations where the employees are chronically exposed to hazardous compounds, like factories and production lines. Regarding this challenge, the present research addresses the mapping of a car factory painting line to possibly toxic volatile organic compounds emitted by all the coatings and chemicals used during the work shifts for the future evaluation of employees’ exposure. For the first time, a Gas Chromatography–Ion Mobility Spectrometry device was employed for the in situ detection of volatile organic compounds in an automotive factory. A total of 26 analytes were detected at nine different locations, of which 15 VOCs were accurately identified. Pure chemical-grade substances were used for the development of the VOC database. Although quantitative analysis was not the goal of this study, a calibration model was presented to one analyte for exemplificative purposes. Relative intensity profiles were plotted for all locations, revealing that some indoor VOCs can reach intensity levels up to 60 times higher than in outdoor air samples. The achieved results proved that the painting line has an abundant number of VOCs emitted from different sources and may lead to serious health risks for the employees. Additional studies shall be developed in the painting line for quantitative evaluation of the existing VOCs and their influence on the employees’ health conditions.
Original language | English |
---|---|
Article number | 2259 |
Number of pages | 18 |
Journal | Processes |
Volume | 11 |
Issue number | 8 |
DOIs | |
Publication status | Published - 27 Jul 2023 |
Keywords
- air quality
- car factory
- coatings
- gas chromatography
- indoor air
- ion mobility spectrometry
- painting line
- volatile organic compounds