TY - JOUR
T1 - Improving specific class mapping from remotely sensed data by Cost-Sensitive learning
AU - Silva, Joel
AU - Bacao, Fernando
AU - Dieng, Maguette
AU - Foody, Giles M.
AU - Caetano, Mario
N1 - Silva, J., Bacao, F., Dieng, M., Foody, G. M., & Caetano, M. (2017). Improving specific class mapping from remotely sensed data by Cost-Sensitive learning. International Journal Of Remote Sensing, 38(11), 3294-3316. https://doi.org/10.1080/01431161.2017.1292073
PY - 2017/6/3
Y1 - 2017/6/3
N2 - In many remote-sensing projects, one is usually interested in a small number of land-cover classes present in a study area and not in all the land-cover classes that make-up the landscape. Previous studies in supervised classification of satellite images have tackled specific class mapping problem by isolating the classes of interest and combining all other classes into one large class, usually called others, and by developing a binary classifier to discriminate the class of interest from the others. Here, this approach is called focused approach. The strength of the focused approach is to decompose the original multi-class supervised classification problem into a binary classification problem, focusing the process on the discrimination of the class of interest. Previous studies have shown that this method is able to discriminate more accurately the classes of interest when compared with the standard multi-class supervised approach. However, it may be susceptible to data imbalance problems present in the training data set, since the classes of interest are often a small part of the training set. A result the classification may be biased towards the largest classes and, thus, be sub-optimal for the discrimination of the classes of interest. This study presents a way to minimize the effects of data imbalance problems in specific class mapping using cost-sensitive learning. In this approach errors committed in theminority class are treated as being costlier than errors committed in the majority class. Cost-sensitive approaches are typically implemented by weighting training data points accordingly to their importance to the analysis. By changing the weight of individual data points, it is possible to shift theweight from the larger classes to the smaller ones, balancing the data set. To illustrate the use of the cost-sensitive approach to map specific classes of interest, a series of experiments with weighted support vector machines classifier and Landsat Thematic Mapper data were conducted to discriminate two types of mangrove forest (high-mangrove and low-mangrove) in Saloum estuary, Senegal, a United Nations Educational, Scientific and Cultural Organisation World Heritage site. Results suggest an increase in overall classification accuracy with the use of cost-sensitive method (97.3%) over the standard multi-class (94.3%) and the focused approach (91.0%). In particular, cost-sensitive method yielded higher sensitivity and specificity values on the discrimination of the classes of interest when compared with the standard multi-class and focused approaches.
AB - In many remote-sensing projects, one is usually interested in a small number of land-cover classes present in a study area and not in all the land-cover classes that make-up the landscape. Previous studies in supervised classification of satellite images have tackled specific class mapping problem by isolating the classes of interest and combining all other classes into one large class, usually called others, and by developing a binary classifier to discriminate the class of interest from the others. Here, this approach is called focused approach. The strength of the focused approach is to decompose the original multi-class supervised classification problem into a binary classification problem, focusing the process on the discrimination of the class of interest. Previous studies have shown that this method is able to discriminate more accurately the classes of interest when compared with the standard multi-class supervised approach. However, it may be susceptible to data imbalance problems present in the training data set, since the classes of interest are often a small part of the training set. A result the classification may be biased towards the largest classes and, thus, be sub-optimal for the discrimination of the classes of interest. This study presents a way to minimize the effects of data imbalance problems in specific class mapping using cost-sensitive learning. In this approach errors committed in theminority class are treated as being costlier than errors committed in the majority class. Cost-sensitive approaches are typically implemented by weighting training data points accordingly to their importance to the analysis. By changing the weight of individual data points, it is possible to shift theweight from the larger classes to the smaller ones, balancing the data set. To illustrate the use of the cost-sensitive approach to map specific classes of interest, a series of experiments with weighted support vector machines classifier and Landsat Thematic Mapper data were conducted to discriminate two types of mangrove forest (high-mangrove and low-mangrove) in Saloum estuary, Senegal, a United Nations Educational, Scientific and Cultural Organisation World Heritage site. Results suggest an increase in overall classification accuracy with the use of cost-sensitive method (97.3%) over the standard multi-class (94.3%) and the focused approach (91.0%). In particular, cost-sensitive method yielded higher sensitivity and specificity values on the discrimination of the classes of interest when compared with the standard multi-class and focused approaches.
UR - http://www.scopus.com/inward/record.url?scp=85028874290&partnerID=8YFLogxK
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000397995400006
U2 - 10.1080/01431161.2017.1292073
DO - 10.1080/01431161.2017.1292073
M3 - Article
AN - SCOPUS:85028874290
SN - 0143-1161
VL - 38
SP - 3294
EP - 3316
JO - International Journal of Remote Sensing
JF - International Journal of Remote Sensing
IS - 11
ER -