TY - JOUR
T1 - Impact of climate changes in the suitable areas for Coffea arabica L. production in Mozambique
T2 - Agroforestry as an alternative management system to strengthen crop sustainability
AU - Cassamo, Crimildo T.
AU - Draper, David
AU - Romeiras, Maria M.
AU - Marques, Isabel
AU - Chiulele, Rogério
AU - Rodrigues, Marisa
AU - Stalmans, Marc
AU - Partelli, Fábio L.
AU - Ribeiro-Barros, Ana
AU - Ramalho, José C.
N1 - Funding Information:
This work was supported by national funds of Camões – Instituto da Cooperação e da Língua (Portugal), Agência Brasileira de Cooperação (Brazil), and Parque Nacional da Gorongosa (Mozambique), through the project GorongosaCafé (TriCafé), as well as through Portuguese national funds from Fundação para a Ciência e a Tecnologia, I.P. (FCT), through the grants SFRH/BD/135357/2017 (C. Cassamo), and the Scientific Employment Stimulus - Individual Call (CEEC Individual) - 2021.01107.CEECIND/CP1689/CT0001 (I. Marques), and to the research units UIDB/00239/2020 (CEF), UIDB/00329/2020 (CE3C) and UIDP/04035/2020 (GeoBioTec). Funding from CNPq, Brazil (F. Partelli) is also greatly acknowledged.
Funding Information:
This work was supported by national funds of Camões – Instituto da Cooperação e da Língua (Portugal), Agência Brasileira de Cooperação (Brazil), and Parque Nacional da Gorongosa (Mozambique), through the project GorongosaCafé (TriCafé), as well as through Portuguese national funds from Fundação para a Ciência e a Tecnologia , I.P. (FCT), through the grants SFRH/BD/135357/2017 (C. Cassamo), and the Scientific Employment Stimulus - Individual Call (CEEC Individual) - 2021.01107.CEECIND/CP1689/CT0001 (I. Marques), and to the research units UIDB/00239/2020 (CEF), UIDB/00329/2020 (CE3C) and UIDP/04035/2020 (GeoBioTec). Funding from CNPq , Brazil (F. Partelli) is also greatly acknowledged.
Publisher Copyright:
© 2023 The Authors
PY - 2023/4/15
Y1 - 2023/4/15
N2 - Climate changes (CC) are a main global phenomenon, with a worldwide impact on natural and agricultural ecosystems. The objective of this study was to analyse the potential impact of future CC on the suitability of areas for rainfed coffee growth, both at the Mozambique national scale and in the Gorongosa Mountain, under Agroforestry (AFS) and Full Sun (FS) management systems. The latter study site is part of the Gorongosa National Park (PNG), one of the most biodiverse places and an outstanding case of successful ecosystem restoration, including the rainforest from Gorongosa Mountain. Additionally, coffee cultivation in PNG under AFS is part of a strategy to strengthen the socio-economic sustainability of the local population, and the recovery of biodiversity in a degraded tropical rainforest ecosystem. Future climate assessments were elaborated through bioclimatic and biophysical variables (Elevation), with Coffea arabica L. being modeled under the current conditions and four global climate models (GCMs) using four Shared Socio-economic Pathways (SSPs). Isothermality, annual precipitation, and altitude were the most important variables influencing suitable areas in Mozambique. The analysis revealed that currently suitable areas where C. arabica is grown in Mozambique will be negatively affected under future scenarios (SSP126 to SSP585) in both systems (AFS and FS), although with clear worst impacts for FS. Under AFS, suitable areas will be reduced between about half and two-thirds by 2041–2060, and up to 91% by 2081–2100 (depending on scenarios) at the whole country level. Additionally, in Gorongosa Mountain, almost all scenarios point to a 30% reduction of the suitable area by 2041–2060, reaching 50% by 2081–2100, both in SSP126 and SSP245 scenarios. In sharp contrast, at the whole country level, the FS system is projected to be unsuitable for most of Mozambique, with area losses close to or above two-thirds already in 2021–2040, and greater than 80% by 2061–2080. Under this system, the projections were even more dramatic, pointing to a total absence of adequate areas at Gorongosa Mountain already by 2021–2040. Overall, our study provides clear evidence that the implementation of AFS greatly reduces CC deleterious impacts, being crucial to guarantee the sustainability of the coffee crop in the near future.
AB - Climate changes (CC) are a main global phenomenon, with a worldwide impact on natural and agricultural ecosystems. The objective of this study was to analyse the potential impact of future CC on the suitability of areas for rainfed coffee growth, both at the Mozambique national scale and in the Gorongosa Mountain, under Agroforestry (AFS) and Full Sun (FS) management systems. The latter study site is part of the Gorongosa National Park (PNG), one of the most biodiverse places and an outstanding case of successful ecosystem restoration, including the rainforest from Gorongosa Mountain. Additionally, coffee cultivation in PNG under AFS is part of a strategy to strengthen the socio-economic sustainability of the local population, and the recovery of biodiversity in a degraded tropical rainforest ecosystem. Future climate assessments were elaborated through bioclimatic and biophysical variables (Elevation), with Coffea arabica L. being modeled under the current conditions and four global climate models (GCMs) using four Shared Socio-economic Pathways (SSPs). Isothermality, annual precipitation, and altitude were the most important variables influencing suitable areas in Mozambique. The analysis revealed that currently suitable areas where C. arabica is grown in Mozambique will be negatively affected under future scenarios (SSP126 to SSP585) in both systems (AFS and FS), although with clear worst impacts for FS. Under AFS, suitable areas will be reduced between about half and two-thirds by 2041–2060, and up to 91% by 2081–2100 (depending on scenarios) at the whole country level. Additionally, in Gorongosa Mountain, almost all scenarios point to a 30% reduction of the suitable area by 2041–2060, reaching 50% by 2081–2100, both in SSP126 and SSP245 scenarios. In sharp contrast, at the whole country level, the FS system is projected to be unsuitable for most of Mozambique, with area losses close to or above two-thirds already in 2021–2040, and greater than 80% by 2061–2080. Under this system, the projections were even more dramatic, pointing to a total absence of adequate areas at Gorongosa Mountain already by 2021–2040. Overall, our study provides clear evidence that the implementation of AFS greatly reduces CC deleterious impacts, being crucial to guarantee the sustainability of the coffee crop in the near future.
KW - Agroforestry systems
KW - Climate change
KW - Coffea arabica L
KW - Gorongosa Mountain
KW - Sustainable development
UR - http://www.scopus.com/inward/record.url?scp=85146233180&partnerID=8YFLogxK
U2 - 10.1016/j.agee.2022.108341
DO - 10.1016/j.agee.2022.108341
M3 - Article
AN - SCOPUS:85146233180
SN - 0167-8809
VL - 346
JO - Agriculture, Ecosystems and Environment
JF - Agriculture, Ecosystems and Environment
M1 - 108341
ER -