TY - JOUR
T1 - Ice modulatory effect of the polysaccharide FucoPol in directional freezing
AU - Guerreiro, Bruno M.
AU - Lou, Leo T.
AU - Rubinsky, Boris
AU - Freitas, Filomena
N1 - info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04378%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04378%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0140%2F2020/PT#
info:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F144258%2F2019/PT#
Funding Information:
This work received financial support from the National Science Foundation (NSF) Graduate Research Fellowship under grant no. DGE 1752814, the NSF Engineering Research Center for Advanced Technologies for Preservation of Biological Systems (ATP-Bio) under NSF EEC grant no. 1941543. B. M. Guerreiro also acknowledges PhD grant funding by Fundação para a Ciência e a Tecnologia, FCT I.P. and supporting personal funding from Fulbright Portugal (21-066), Fundação Luso-Americana para o Desenvolvimento, FLAD (Proj. 2021/0070 - G-2021-0052) and The Company of Biologists (JCSTF2105556). The authors would like to thank L. Warburton for valuable insights on cryobioprinting and tissue engineering.
Publisher Copyright:
© 2023 The Royal Society of Chemistry.
PY - 2023/11/7
Y1 - 2023/11/7
N2 - Directional freezing harnesses crystal growth development to create aligned solid structures or etchable patterns, useful for directed ice growth in cryobiology and cryoprinting for tissue engineering. We have delved into the ice-modulating properties of FucoPol, a fucose-rich, bio-based polysaccharide. Previous research on FucoPol revealed its non-colligative hysteresis in kinetic freezing point, reduced crystal dimensions and cryoprotective effect. Here, FucoPol reshaped developing sharp, anisotropic obloid ice dendrites into linearly-aligned, thin, isotropic spicules or tubules (cooling rate-dependent morphology). The effect was enhanced by increased concentration and decreased cooling rate, but major reshaping was observed with 5 μM and below. These structures boasted remarkable enhancements: uniform alignment (3-fold), tip symmetry (5.9-fold) and reduced thickness (5.3-fold). The ice-modulating capability of FucoPol resembles the Gibbs-Thomson effect of antifreeze proteins, in particular the ice reshaping profiles of type I antifreeze proteins and rattlesnake venom lectins, evidenced by a 52.6 ± 2.2° contact angle (θ) and spicular structure generation. The high viscosity of FucoPol solutions, notably higher than that of sucrose, plays a crucial role. This viscosity dynamically intensifies during directional freezing, leading to a diffusion-limited impediment that influences dendritic formation. Essentially, the ice-modulating prowess of FucoPol not only reinforces its established cryoprotective qualities but also hints at its potential utility in applications that harness advantageous ice growth for intentional structuring. For instance, its potential in cryobioprinting is noteworthy, offering an economical, biodegradable resource, of easy removal, sidestepping the need for toxic reagents. Moreover, FucoPol fine-tunes resulting ice structures, enabling the ice-etching of biologically relevant patterns within biocompatible matrices for advanced tissue engineering endeavors.
AB - Directional freezing harnesses crystal growth development to create aligned solid structures or etchable patterns, useful for directed ice growth in cryobiology and cryoprinting for tissue engineering. We have delved into the ice-modulating properties of FucoPol, a fucose-rich, bio-based polysaccharide. Previous research on FucoPol revealed its non-colligative hysteresis in kinetic freezing point, reduced crystal dimensions and cryoprotective effect. Here, FucoPol reshaped developing sharp, anisotropic obloid ice dendrites into linearly-aligned, thin, isotropic spicules or tubules (cooling rate-dependent morphology). The effect was enhanced by increased concentration and decreased cooling rate, but major reshaping was observed with 5 μM and below. These structures boasted remarkable enhancements: uniform alignment (3-fold), tip symmetry (5.9-fold) and reduced thickness (5.3-fold). The ice-modulating capability of FucoPol resembles the Gibbs-Thomson effect of antifreeze proteins, in particular the ice reshaping profiles of type I antifreeze proteins and rattlesnake venom lectins, evidenced by a 52.6 ± 2.2° contact angle (θ) and spicular structure generation. The high viscosity of FucoPol solutions, notably higher than that of sucrose, plays a crucial role. This viscosity dynamically intensifies during directional freezing, leading to a diffusion-limited impediment that influences dendritic formation. Essentially, the ice-modulating prowess of FucoPol not only reinforces its established cryoprotective qualities but also hints at its potential utility in applications that harness advantageous ice growth for intentional structuring. For instance, its potential in cryobioprinting is noteworthy, offering an economical, biodegradable resource, of easy removal, sidestepping the need for toxic reagents. Moreover, FucoPol fine-tunes resulting ice structures, enabling the ice-etching of biologically relevant patterns within biocompatible matrices for advanced tissue engineering endeavors.
UR - http://www.scopus.com/inward/record.url?scp=85177548010&partnerID=8YFLogxK
U2 - 10.1039/d3sm01154b
DO - 10.1039/d3sm01154b
M3 - Article
C2 - 37964678
AN - SCOPUS:85177548010
SN - 1744-683X
VL - 19
SP - 8978
EP - 8987
JO - Soft Matter
JF - Soft Matter
IS - 46
ER -