Abstract
The efficient transformation of carbon dioxide into fuels can be an excellent alternative to sequestration. In this work, we describe CO2 hydrogenation to methane in imidazolium-based ionic liquid media, using ruthenium nanoparticles prepared in situ as catalyst. The best yield of methane (69 %) was achieved using 0.24 mol % ruthenium catalyst (in [omim][NTf2], 1-octyl-3-methylimidazolium bistrifluoromethanesulfonylimide, at 40 bar of hydrogen pressure plus 40 bar of CO2 pressure, and at 150 °C. The IL of Dr. Melo: The transformation of carbon dioxide (CO2) into fuels, from methane (CH4), is an excellent alternative to methanol processes. The hydrogenation of carbon dioxide is achieved by using ruthenium nanoparticles prepared in situ in the presence of an imidazolium-based ionic liquid (IL). The best yield of methane is obtained when using the IL [omim][NTf2]. The nanoparticles are investigated by a range of techniques.
Original language | English |
---|---|
Pages (from-to) | 1081-1084 |
Number of pages | 4 |
Journal | ChemSusChem |
Volume | 9 |
Issue number | 10 |
DOIs | |
Publication status | Published - 23 May 2016 |
Keywords
- carbon dioxide
- hydrogenation
- ionic liquids
- methane
- ruthenium nanoparticles