Hydraulic pressures generated in Magnetic Ionic Liquids by paramagnetic fluid/air interfaces inside of uniform tangential magnetic fields

Paul Scovazzo, Carla Alexandra Moreira Portugal, Andreia Rosatella, Carlos A M Afonso, Joao G. Crespo

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Hypothesis: Magnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial. Experiments: We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element. Findings: Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid's volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910Pa at 1.627Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications.
Original languageEnglish
Pages (from-to)16-23
JournalJournal Of Colloid And Interface Science
Volume428
DOIs
Publication statusPublished - 15 Aug 2014

Keywords

  • Magnetic energy density
  • Magnetic force density
  • Magnetic ionic liquid
  • Magnetic surface force
  • Room temperature ionic liquid
  • The ferrohydrodynamic bernoulli relationship

Fingerprint Dive into the research topics of 'Hydraulic pressures generated in Magnetic Ionic Liquids by paramagnetic fluid/air interfaces inside of uniform tangential magnetic fields'. Together they form a unique fingerprint.

Cite this