TY - JOUR
T1 - High Yields of 2,3-Butanediol and Mannitol in Lactococcus lactis through Engineering of NAD(+) Cofactor Recycling
AU - Santos, Maria Helena
AU - Neves, Ana Rute
AU - Gaspar, Paula Cristina
PY - 2011/1/1
Y1 - 2011/1/1
N2 - Manipulation of NADH-dependent steps, and particularly disruption of the las-located lactate dehydrogenase (ldh) gene in Lactococcus lactis, is common to engineering strategies envisaging the accumulation of reduced end products other than lactate. Reverse transcription-PCR experiments revealed that three out of the four genes assigned to lactate dehydrogenase in the genome of L. lactis, i.e., the ldh, ldhB, and ldhX genes, were expressed in the parental strain MG1363. Given that genetic redundancy is often a major cause of metabolic instability in engineered strains, we set out to develop a genetically stable lactococcal host tuned for the production of reduced compounds. Therefore, the ldhB and ldhX genes were sequentially deleted in L. lactis FI10089, a strain with a deletion of the ldh gene. The single, double, and triple mutants, FI10089, FI10089 Delta ldhB, and FI10089 Delta ldhB Delta ldhX, showed similar growth profiles and displayed mixed-acid fermentation, ethanol being the main reduced end product. Hence, the alcohol dehydrogenase-encoding gene, the adhE gene, was inactivated in FI10089, but the resulting strain reverted to homolactic fermentation due to induction of the ldhB gene. The three lactate dehydrogenase-deficient mutants were selected as a background for the production of mannitol and 2,3-butanediol. Pathways for the biosynthesis of these compounds were overexpressed under the control of a nisin promoter, and the constructs were analyzed with respect to growth parameters and product yields under anaerobiosis. Glucose was efficiently channeled to mannitol (maximal yield, 42%) or to 2,3-butanediol (maximal yield, 67%). The theoretical yield for 2,3-butanediol was achieved. We show that FI10089 Delta ldhB is a valuable basis for engineering strategies aiming at the production of reduced compounds.
AB - Manipulation of NADH-dependent steps, and particularly disruption of the las-located lactate dehydrogenase (ldh) gene in Lactococcus lactis, is common to engineering strategies envisaging the accumulation of reduced end products other than lactate. Reverse transcription-PCR experiments revealed that three out of the four genes assigned to lactate dehydrogenase in the genome of L. lactis, i.e., the ldh, ldhB, and ldhX genes, were expressed in the parental strain MG1363. Given that genetic redundancy is often a major cause of metabolic instability in engineered strains, we set out to develop a genetically stable lactococcal host tuned for the production of reduced compounds. Therefore, the ldhB and ldhX genes were sequentially deleted in L. lactis FI10089, a strain with a deletion of the ldh gene. The single, double, and triple mutants, FI10089, FI10089 Delta ldhB, and FI10089 Delta ldhB Delta ldhX, showed similar growth profiles and displayed mixed-acid fermentation, ethanol being the main reduced end product. Hence, the alcohol dehydrogenase-encoding gene, the adhE gene, was inactivated in FI10089, but the resulting strain reverted to homolactic fermentation due to induction of the ldhB gene. The three lactate dehydrogenase-deficient mutants were selected as a background for the production of mannitol and 2,3-butanediol. Pathways for the biosynthesis of these compounds were overexpressed under the control of a nisin promoter, and the constructs were analyzed with respect to growth parameters and product yields under anaerobiosis. Glucose was efficiently channeled to mannitol (maximal yield, 42%) or to 2,3-butanediol (maximal yield, 67%). The theoretical yield for 2,3-butanediol was achieved. We show that FI10089 Delta ldhB is a valuable basis for engineering strategies aiming at the production of reduced compounds.
KW - ACID BACTERIA
KW - STREPTOCOCCUS-LACTIS
KW - COMPLETE GENOME SEQUENCE
KW - ESCHERICHIA-COLI
KW - STRAINS DEFICIENT
KW - CONTROLLED GENE-EXPRESSION
KW - LACTATE-DEHYDROGENASE
KW - IN-VIVO
KW - MESO-2,3-BUTANEDIOL DEHYDROGENASE
KW - SUBSP CREMORIS
U2 - 10.1128/AEM.05544-11
DO - 10.1128/AEM.05544-11
M3 - Article
SN - 0099-2240
VL - 77
SP - 6826
EP - 6835
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 19
ER -