TY - JOUR
T1 - Heterologous production of resveratrol in bacterial hosts
T2 - current status and perspectives
AU - Braga, A.
AU - Ferreira, P.
AU - Oliveira, J.
AU - Rocha, I.
AU - Faria, N.
PY - 2018/8/1
Y1 - 2018/8/1
N2 - The polyphenol resveratrol (3,5,4′-trihydroxystilbene) is a well-known plant secondary metabolite, commonly used as a medical ingredient and a nutritional supplement. Due to its health-promoting properties, the demand for resveratrol is expected to continue growing. This stilbene can be found in different plants, including grapes, berries (blackberries, blueberries and raspberries), peanuts and their derived food products, such as wine and juice. The commercially available resveratrol is usually extracted from plants, however this procedure has several drawbacks such as low concentration of the product of interest, seasonal variation, risk of plant diseases and product stability. Alternative production processes are being developed to enable the biotechnological production of resveratrol by genetically engineering several microbial hosts, such as Escherichia coli, Corynebacterium glutamicum, Lactococcus lactis, among others. However, these bacterial species are not able to naturally synthetize resveratrol and therefore genetic modifications have been performed. The application of emerging metabolic engineering offers new possibilities for strain and process optimization. This mini-review will discuss the recent progress on resveratrol biosynthesis in engineered bacteria, with a special focus on the metabolic engineering modifications, as well as the optimization of the production process. These strategies offer new tools to overcome the limitations and challenges for microbial production of resveratrol in industry.
AB - The polyphenol resveratrol (3,5,4′-trihydroxystilbene) is a well-known plant secondary metabolite, commonly used as a medical ingredient and a nutritional supplement. Due to its health-promoting properties, the demand for resveratrol is expected to continue growing. This stilbene can be found in different plants, including grapes, berries (blackberries, blueberries and raspberries), peanuts and their derived food products, such as wine and juice. The commercially available resveratrol is usually extracted from plants, however this procedure has several drawbacks such as low concentration of the product of interest, seasonal variation, risk of plant diseases and product stability. Alternative production processes are being developed to enable the biotechnological production of resveratrol by genetically engineering several microbial hosts, such as Escherichia coli, Corynebacterium glutamicum, Lactococcus lactis, among others. However, these bacterial species are not able to naturally synthetize resveratrol and therefore genetic modifications have been performed. The application of emerging metabolic engineering offers new possibilities for strain and process optimization. This mini-review will discuss the recent progress on resveratrol biosynthesis in engineered bacteria, with a special focus on the metabolic engineering modifications, as well as the optimization of the production process. These strategies offer new tools to overcome the limitations and challenges for microbial production of resveratrol in industry.
KW - Bacteria
KW - Malonyl-CoA
KW - Metabolic engineering
KW - Pathway engineering
KW - Resveratrol
UR - http://www.scopus.com/inward/record.url?scp=85050923667&partnerID=8YFLogxK
U2 - 10.1007/s11274-018-2506-8
DO - 10.1007/s11274-018-2506-8
M3 - Review article
C2 - 30054757
AN - SCOPUS:85050923667
SN - 0959-3993
VL - 34
JO - World Journal of Microbiology and Biotechnology
JF - World Journal of Microbiology and Biotechnology
IS - 8
M1 - 122
ER -