TY - JOUR
T1 - Grain Composition and Quality in Portuguese Triticum aestivum Germplasm Subjected to Heat Stress after Anthesis
AU - Scotti-Campos, Paula
AU - Oliveira, Karliana
AU - Pais, Isabel P.
AU - Bagulho, Ana Sofia
AU - Semedo, José N.
AU - Serra, Octávio
AU - Simões, Fernanda
AU - Lidon, Fernando C.
AU - Coutinho, José
AU - Maçãs, Benvindo
N1 - Funding Information:
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04035%2F2020/PT#
Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/1/28
Y1 - 2022/1/28
N2 - Bread wheat (Triticum aestivum) is a major crop worldwide, and it is highly susceptible to heat. In this work, grain production and composition were evaluated in Portuguese T. aestivum germplasm (landraces and commercial varieties), which was subjected to heat after anthesis (grain filling stage). Heat increased the test weight (TW) in Nabão, Grécia and Restauração, indicating an improved flour-yield potential. Mocho de Espiga Branca (MEB) and Transmontano (T94) showed higher thousand-kernel weight (TKW). Gentil Rosso presented increased soluble sugars, which are yeast substrates in the bread-making process. Ardila stood out for its protein increase under heat. Overall SDS was unaffected by higher temperature, but increased in T94, indicating a better dough elasticity for bread-making purposes. Under heat, lipid content was maintained in most genotypes, being endogenous fatty acids (FAs) key players in fresh bread quality. Lipid unsaturation, evaluated through the double bond index (DBI), also remained unaffected in most genotypes, suggesting a lower flour susceptibility to lipoperoxidation. In Grécia, heat promoted a higher abundance of monounsaturated oleic (C18:1) and polyunsaturated linoleic (C18:2) acids, which are essential fatty acids in the human diet. This work highlighted a great variability in most parameters both under control conditions or in response to heat during grain filling. Cluster analysis of traits revealed a lower susceptibility to heat during grain filling in Ardila, Restauração, and Ruivo, in contrast to MEQ, which seems to be more differentially affected at this stage. Characterization and identification of more favorable features under adverse environments may be relevant for agronomic, industrial, or breeding purposes, in view of a better crop adaptation to changing climate and an improved crop sustainability in agricultural systems more prone to heat stress.
AB - Bread wheat (Triticum aestivum) is a major crop worldwide, and it is highly susceptible to heat. In this work, grain production and composition were evaluated in Portuguese T. aestivum germplasm (landraces and commercial varieties), which was subjected to heat after anthesis (grain filling stage). Heat increased the test weight (TW) in Nabão, Grécia and Restauração, indicating an improved flour-yield potential. Mocho de Espiga Branca (MEB) and Transmontano (T94) showed higher thousand-kernel weight (TKW). Gentil Rosso presented increased soluble sugars, which are yeast substrates in the bread-making process. Ardila stood out for its protein increase under heat. Overall SDS was unaffected by higher temperature, but increased in T94, indicating a better dough elasticity for bread-making purposes. Under heat, lipid content was maintained in most genotypes, being endogenous fatty acids (FAs) key players in fresh bread quality. Lipid unsaturation, evaluated through the double bond index (DBI), also remained unaffected in most genotypes, suggesting a lower flour susceptibility to lipoperoxidation. In Grécia, heat promoted a higher abundance of monounsaturated oleic (C18:1) and polyunsaturated linoleic (C18:2) acids, which are essential fatty acids in the human diet. This work highlighted a great variability in most parameters both under control conditions or in response to heat during grain filling. Cluster analysis of traits revealed a lower susceptibility to heat during grain filling in Ardila, Restauração, and Ruivo, in contrast to MEQ, which seems to be more differentially affected at this stage. Characterization and identification of more favorable features under adverse environments may be relevant for agronomic, industrial, or breeding purposes, in view of a better crop adaptation to changing climate and an improved crop sustainability in agricultural systems more prone to heat stress.
KW - Bread wheat
KW - Grain filling
KW - High temperature
KW - Quality and nutritional traits
KW - Wholemeal flour
UR - http://www.scopus.com/inward/record.url?scp=85123531387&partnerID=8YFLogxK
U2 - 10.3390/plants11030365
DO - 10.3390/plants11030365
M3 - Article
C2 - 35161344
AN - SCOPUS:85123531387
SN - 2223-7747
VL - 11
JO - Plants
JF - Plants
IS - 3
M1 - 365
ER -