TY - JOUR
T1 - Gold Nanoprobes for Detection of a Crucial EGFR Deletion for Early Diagnosis of Non-Small-Cell Lung Cancer
AU - Enea, Maria
AU - Nuekaew, Anupong
AU - Franco, Ricardo
AU - Pereira, Eulália
N1 - Funding Information:
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04378%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04378%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F50006%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50006%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0140%2F2020/PT#
M.E. acknowledges LAQV for her post-doc grant ref. REQUIMTE 2022-06, and A.N. acknowledges the Erasmus+: Erasmus Mundus Program of the European Union.
Publisher Copyright:
© 2024 by the authors.
PY - 2024/3/29
Y1 - 2024/3/29
N2 - Gold nanoparticles (AuNPs) exhibit improved optical and spectral properties compared to bulk materials, making them suitable for the detection of DNA, RNA, antigens, and antibodies. Here, we describe a simple, selective, and rapid non-cross linking detection assay, using approx. 35 nm spherical Au nanoprobes, for a common mutation occurring in exon 19 of the epidermal growth factor receptor (EGFR), associated with non-small-cell lung cancer cells. AuNPs were synthesized based on the seed-mediated growth method and functionalized with a specific 16 bp thiolated oligonucleotide using a pH-assisted method. Both AuNPs and Au nanoprobes proved to be highly stable and monodisperse through ultraviolet-visible spectrophotometry, dynamic light scattering (DLS), and electrophoretic light scattering (ELS). Our results indicate a detection limit of 1.5 µg mL−1 using a 0.15 nmol dm−3 Au nanoprobe concentration. In conclusion, this work presents an effective possibility for a straightforward, fast, and inexpensive alternative for the detection of DNA sequences related to lung cancer, leading to a potential platform for early diagnosis of lung cancer patients.
AB - Gold nanoparticles (AuNPs) exhibit improved optical and spectral properties compared to bulk materials, making them suitable for the detection of DNA, RNA, antigens, and antibodies. Here, we describe a simple, selective, and rapid non-cross linking detection assay, using approx. 35 nm spherical Au nanoprobes, for a common mutation occurring in exon 19 of the epidermal growth factor receptor (EGFR), associated with non-small-cell lung cancer cells. AuNPs were synthesized based on the seed-mediated growth method and functionalized with a specific 16 bp thiolated oligonucleotide using a pH-assisted method. Both AuNPs and Au nanoprobes proved to be highly stable and monodisperse through ultraviolet-visible spectrophotometry, dynamic light scattering (DLS), and electrophoretic light scattering (ELS). Our results indicate a detection limit of 1.5 µg mL−1 using a 0.15 nmol dm−3 Au nanoprobe concentration. In conclusion, this work presents an effective possibility for a straightforward, fast, and inexpensive alternative for the detection of DNA sequences related to lung cancer, leading to a potential platform for early diagnosis of lung cancer patients.
KW - DNA detection
KW - EGRF mutation
KW - gold nanoprobe
KW - non-cross linking
KW - UV-Vis
UR - http://www.scopus.com/inward/record.url?scp=85191471097&partnerID=8YFLogxK
U2 - 10.3390/bios14040162
DO - 10.3390/bios14040162
M3 - Article
C2 - 38667155
AN - SCOPUS:85191471097
SN - 2079-6374
VL - 14
JO - Biosensors
JF - Biosensors
IS - 4
M1 - 162
ER -