Globalization of group cohomology in the sense of Alvares-Alves-Redondo

Mikhailo Dokuchaev, Mykola Khrypchenko, Juan Jacobo Simón

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Recently E.R. Alvares, M.M. Alves and M.J. Redondo introduced a cohomology for a group G with values in a module over the partial group algebra Kpar(G), which is different from the partial group cohomology defined earlier by the first two named authors of the present paper. Given a unital partial action α of G on a (unital) algebra A we consider A as a Kpar(G)-module in a natural way and study the globalization problem for the cohomology in the sense of Alvares-Alves-Redondo with values in A. The problem is reduced to an extendibility property of cocycles. Furthermore, assuming that A is a product of blocks, we prove that any cocycle is globalizable, and globalizations of cohomologous cocycles are also cohomologous. As a consequence we obtain that the Alvares-Alves-Redondo cohomology group Hpar n(G,A) is isomorphic to the usual cohomology group Hn(G,M(B)), where M(B) is the multiplier algebra of B and B is the algebra under the enveloping action of α.

Original languageEnglish
Pages (from-to)604-640
Number of pages37
JournalJournal of Algebra
Publication statusPublished - 15 Mar 2020


  • Cohomology
  • Globalization
  • Partial action


Dive into the research topics of 'Globalization of group cohomology in the sense of Alvares-Alves-Redondo'. Together they form a unique fingerprint.

Cite this