TY - JOUR
T1 - Fungal extrolites as a new source for therapeutic compounds and as building blocks for applications in synthetic biology.
AU - Leitão, Ana Lúcia Monteiro Durão
N1 - Sem pdf
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Secondary metabolic pathways of fungal origin provide an almost unlimited resource of new compounds for medical applications, which can fulfill some of the, currently unmet, needs for therapeutic alternatives for the treatment of a number of diseases. Secondary metabolites secreted to the extracellular medium (extrolites) belong to diverse chemical and structural families, but the majority of them are synthesized by the condensation of a limited number of precursor building blocks including amino acids, sugars, lipids and low molecular weight compounds also employed in anabolic processes. In fungi, genes related to secondary metabolic pathways are frequently clustered together and show a modular organization within fungal genomes. The majority of fungal gene clusters responsible for the biosynthesis of secondary metabolites contain genes encoding a high molecular weight condensing enzyme which is responsible for the assembly of the precursor units of the metabolite. They also contain other auxiliary genes which encode enzymes involved in subsequent chemical modification of the metabolite core. Synthetic biology is a branch of molecular biology whose main objective is the manipulation of cellular components and processes in order to perform logically connected metabolic functions. In synthetic biology applications, biosynthetic modules from secondary metabolic processes can be rationally engineered and combined to produce either new compounds, or to improve the activities and/or the bioavailability of the already known ones. Recently, advanced genome editing techniques based on guided DNA endonucleases have shown potential for the manipulation of eukaryotic and bacterial genomes. This review discusses the potential application of genetic engineering and genome editing tools in the rational design of fungal secondary metabolite pathways by taking advantage of the increasing availability of genomic and biochemical data.
AB - Secondary metabolic pathways of fungal origin provide an almost unlimited resource of new compounds for medical applications, which can fulfill some of the, currently unmet, needs for therapeutic alternatives for the treatment of a number of diseases. Secondary metabolites secreted to the extracellular medium (extrolites) belong to diverse chemical and structural families, but the majority of them are synthesized by the condensation of a limited number of precursor building blocks including amino acids, sugars, lipids and low molecular weight compounds also employed in anabolic processes. In fungi, genes related to secondary metabolic pathways are frequently clustered together and show a modular organization within fungal genomes. The majority of fungal gene clusters responsible for the biosynthesis of secondary metabolites contain genes encoding a high molecular weight condensing enzyme which is responsible for the assembly of the precursor units of the metabolite. They also contain other auxiliary genes which encode enzymes involved in subsequent chemical modification of the metabolite core. Synthetic biology is a branch of molecular biology whose main objective is the manipulation of cellular components and processes in order to perform logically connected metabolic functions. In synthetic biology applications, biosynthetic modules from secondary metabolic processes can be rationally engineered and combined to produce either new compounds, or to improve the activities and/or the bioavailability of the already known ones. Recently, advanced genome editing techniques based on guided DNA endonucleases have shown potential for the manipulation of eukaryotic and bacterial genomes. This review discusses the potential application of genetic engineering and genome editing tools in the rational design of fungal secondary metabolite pathways by taking advantage of the increasing availability of genomic and biochemical data.
KW - synthetic biology
KW - therapeutic compounds
KW - Fungal extrolites
U2 - 10.1016/j.micres.2014.02.007
DO - 10.1016/j.micres.2014.02.007
M3 - Article
C2 - 24636745
SN - 0944-5013
VL - 169
SP - 652
EP - 665
JO - Microbiological Research
JF - Microbiological Research
IS - 9-10
ER -