TY - JOUR
T1 - Fundamental isomorphism conjecture via noncommutative motives
AU - Tabuada, Gonçalo Jorge Trigo Neri
PY - 2013/1/1
Y1 - 2013/1/1
N2 - Given a group, we construct a “fundamental localizing invariant” on its orbit category. We prove that any isomorphism conjecture valid for this fundamental invariant implies the same isomorphism conjecture for all localizing invariants, like non-connectiveK-theory, Hochschild homology, cyclic homology, and so on. Then, we discuss how to reduce such a fundamental isomorphism conjecture to essentiallyK-theoretic ones. Finally, we develop the analogue additive results.
AB - Given a group, we construct a “fundamental localizing invariant” on its orbit category. We prove that any isomorphism conjecture valid for this fundamental invariant implies the same isomorphism conjecture for all localizing invariants, like non-connectiveK-theory, Hochschild homology, cyclic homology, and so on. Then, we discuss how to reduce such a fundamental isomorphism conjecture to essentiallyK-theoretic ones. Finally, we develop the analogue additive results.
KW - (topological) Hochschild homology
KW - assembly map
KW - dg categories
KW - algebraic K-theory
KW - non-commutative motives
KW - Grothendieck derivators
KW - Farrell-Jones conjectures
U2 - 10.1002/mana.201200057
DO - 10.1002/mana.201200057
M3 - Article
SN - 0025-584X
VL - 286
SP - 791
EP - 798
JO - Mathematische Nachrichten
JF - Mathematische Nachrichten
IS - 8-9
ER -