Finite Difference Schemes with Non-uniform Time Meshes for Distributed-Order Diffusion Equations

M. L. Morgado, M. Rebelo, L. L. Ferrás

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this work, a stable and convergent numerical scheme on non-uniform time meshes is proposed, for the solution of distributed-order diffusion equations. A set of numerical results illustrates that the use of particular non-uniform time meshes provides more accurate results than the use of a uniform mesh, in the case of non-smooth solutions.

Original languageEnglish
Title of host publicationProceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21)
EditorsAndrzej Dzielinski, Dominik Sierociuk, Piotr Ostalczyk
Place of PublicationCham
PublisherSpringer
Pages239-244
Number of pages6
ISBN (Electronic)978-3-031-04383-3
ISBN (Print)978-3-031-04382-6
DOIs
Publication statusPublished - 2022
EventInternational Conference on Fractional Calculus and its Applications, 2021 - Virtual, Online
Duration: 6 Sept 20218 Sept 2021

Publication series

NameLecture Notes in Networks and Systems
PublisherSpringer
Volume452
ISSN (Print)2367-3370
ISSN (Electronic)2367-3389

Conference

ConferenceInternational Conference on Fractional Calculus and its Applications, 2021
CityVirtual, Online
Period6/09/218/09/21

Keywords

  • Diffusion equations
  • Distributed-order derivatives
  • Finite differences
  • Non-uniform meshes

Cite this