TY - JOUR
T1 - Feature ranking and rank aggregation for automatic sleep stage classification
T2 - 4th International Work-Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2016
AU - Najdi, Shirin
AU - Gharbali, Ali Abdollahi
AU - Fonseca, José Manuel
N1 - This work was partially funded by FCT Strategic Program UID/EEA/00066/203 of UNINOVA, CTS and INCENTIVO/EEI/UI0066/2014 of UNINOVA. Publication costs were funded by FCT Strategic Program UID/EEA/00066/ 203 of UNINOVA, CTS.
PY - 2017/8/18
Y1 - 2017/8/18
N2 - Background: Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. Methods: In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Results: Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. Conclusions: The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user.
AB - Background: Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. Methods: In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Results: Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. Conclusions: The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user.
KW - Biomedical signal processing
KW - Feature ranking
KW - Feature selection
KW - k-NN
KW - Neural network
KW - Polysomnography
KW - Rank aggregation
KW - Sleep stage classification
UR - http://www.scopus.com/inward/record.url?scp=85027726551&partnerID=8YFLogxK
U2 - 10.1186/s12938-017-0358-3
DO - 10.1186/s12938-017-0358-3
M3 - Conference article
C2 - 28830438
AN - SCOPUS:85027726551
VL - 16
JO - BioMedical Engineering Online
JF - BioMedical Engineering Online
SN - 1475-925X
M1 - 78
Y2 - 20 April 2016 through 22 April 2016
ER -