TY - JOUR
T1 - Experimental and theoretical studies of supercritical methane adsorption in the mil-53(al) metal organic framework
AU - Lyubchyk, Andriy
AU - Esteves, Isabel A. A. C.
AU - Cruz, Fernando J. A. L.
AU - Mota, José P. B.
N1 - Financial support from FCT/MCTES (Portugal), through grants PTDC/CTM/104782/2008, SFRH/BD/45477/2008, and SFRH/BPD/45064/2008, is gratefully acknowledged. The assistance of Dr. Teresa Nunes (CQE/EST) on the recording and interpretation of the solid state NMR spectrum is also acknowledged.
PY - 2011/10/27
Y1 - 2011/10/27
N2 - The adsorption equilibrium properties of supercritical methane in the large-pore (lp) structure of the MIL-53(Al) metal organic framework were studied experimentally by gravimetric adsorption and theoretically by grand canonical Monte Carlo (GCMC) simulation. The adsorption experiments span a broad range of pressures (0.01-7 MPa) and temperatures (303-353 K). In our molecular simulation work, MIL-53lp(Al) is assumed to have a perfect, rigid lattice, and both fluid-fluid and solid-fluid interactions are modeled using the TraPPE-UA force field. The adsorption isotherms and isosteric heats of adsorption predicted by GCMC simulation, without any reparametrization of the TraPPE-UA force field parameters, are in good agreement with the experimental measurements. Our molecular simulations predict that the amount of methane adsorbed in the porous framework of MIL-53lp(Al) at 298.15 K and 3.5 MPa is 5.79 mol/kg, yielding a methane storage capacity of 132.6 v/v (volumes of stored gas, measured at standard conditions, per storage volume) for a monolithic block and 107.2 v/v for the theoretical limit of a close-packing of uniform spherical particles. For an isothermal (298.15 K) discharge cycle between 3.5 and 0.136 MPa, the predicted net deliverable capacity is 114.0 (v/v)net for a monolith and 93.1 (v/v)net for a close-packed bed. If, however, the storage system is operated at 253 K, the net storage capacity of a monolithic block of MIL-53(Al) increases to a value that is very close to the DOE target of 150 (v/v)net.
AB - The adsorption equilibrium properties of supercritical methane in the large-pore (lp) structure of the MIL-53(Al) metal organic framework were studied experimentally by gravimetric adsorption and theoretically by grand canonical Monte Carlo (GCMC) simulation. The adsorption experiments span a broad range of pressures (0.01-7 MPa) and temperatures (303-353 K). In our molecular simulation work, MIL-53lp(Al) is assumed to have a perfect, rigid lattice, and both fluid-fluid and solid-fluid interactions are modeled using the TraPPE-UA force field. The adsorption isotherms and isosteric heats of adsorption predicted by GCMC simulation, without any reparametrization of the TraPPE-UA force field parameters, are in good agreement with the experimental measurements. Our molecular simulations predict that the amount of methane adsorbed in the porous framework of MIL-53lp(Al) at 298.15 K and 3.5 MPa is 5.79 mol/kg, yielding a methane storage capacity of 132.6 v/v (volumes of stored gas, measured at standard conditions, per storage volume) for a monolithic block and 107.2 v/v for the theoretical limit of a close-packing of uniform spherical particles. For an isothermal (298.15 K) discharge cycle between 3.5 and 0.136 MPa, the predicted net deliverable capacity is 114.0 (v/v)net for a monolith and 93.1 (v/v)net for a close-packed bed. If, however, the storage system is operated at 253 K, the net storage capacity of a monolithic block of MIL-53(Al) increases to a value that is very close to the DOE target of 150 (v/v)net.
KW - Organometallics
KW - Adsorption
KW - Guest molecules
UR - http://www.scopus.com/inward/record.url?scp=80054896786&partnerID=8YFLogxK
U2 - 10.1021/jp207326d
DO - 10.1021/jp207326d
M3 - Article
AN - SCOPUS:80054896786
SN - 1932-7447
VL - 115
SP - 20628
EP - 20638
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 42
ER -