TY - JOUR
T1 - Evaluation of Cation Influence on the Formation and Extraction Capability of Ionic-Liquid-Based Aqueous Biphasic Systems
AU - Martins, Mara Guadalupe
AU - Marrucho Ferreira, Isabel Maria
N1 - Marrucho, I. M. (autor ITQB)
PY - 2009/1/1
Y1 - 2009/1/1
N2 - In addition to the large range of applications proposed in literature, ionic liquids (ILs) have been recently reported to be able to form aqueous biphasic systems (ABS). They could thus be interesting media in biotechnological applications for the separation and purification of vital biomolecules. Therefore, in this work, a systematic study involving a large number of imidazolium-based ILs was conducted to provide new information related to ILs' ABS-promoting capability and extraction ability. For that purpose, the influence of the number of alkyl groups present at the cation, the cation side alkyl chain length, and the presence of double bonds, aromatic rings, and hydroxyl groups on this alkyl chain were evaluated. Ternary phase diagrams of the ABS formed by these ILs and K3PO4 and the respective tie-lines were measured and presented. The ABS here investigated were further characterized for the first time accordingly to their extractive potential for amino acids, where L-tryptophan was selected as a model biomolecule. The partition coefficients here obtained were shown to be substantially larger than those observed in conventional ABS, demonstrating therefore the fine potential of IL-based ABS for biomolecules separation and purification.
AB - In addition to the large range of applications proposed in literature, ionic liquids (ILs) have been recently reported to be able to form aqueous biphasic systems (ABS). They could thus be interesting media in biotechnological applications for the separation and purification of vital biomolecules. Therefore, in this work, a systematic study involving a large number of imidazolium-based ILs was conducted to provide new information related to ILs' ABS-promoting capability and extraction ability. For that purpose, the influence of the number of alkyl groups present at the cation, the cation side alkyl chain length, and the presence of double bonds, aromatic rings, and hydroxyl groups on this alkyl chain were evaluated. Ternary phase diagrams of the ABS formed by these ILs and K3PO4 and the respective tie-lines were measured and presented. The ABS here investigated were further characterized for the first time accordingly to their extractive potential for amino acids, where L-tryptophan was selected as a model biomolecule. The partition coefficients here obtained were shown to be substantially larger than those observed in conventional ABS, demonstrating therefore the fine potential of IL-based ABS for biomolecules separation and purification.
KW - POLYETHYLENE-GLYCOL
KW - PHASE-DIAGRAM DATA2-PHASE SYSTEMS
KW - PARTITIONING BEHAVIOR
KW - MUTUAL SOLUBILITIES
U2 - 10.1021/jp900293v
DO - 10.1021/jp900293v
M3 - Article
VL - 113
SP - 5194
EP - 5199
JO - Journal Of Physical Chemistry B
JF - Journal Of Physical Chemistry B
SN - 1520-6106
IS - 15
ER -